%I #7 Jan 21 2023 19:48:51
%S 145,146,147,148,149,150,151,152,153,154,155,289,290,291,292,293,294,
%T 295,296,297,298,299,302,303,304,305,306,307,308,309,310,311,433,434,
%U 435,436,437,438,439,440,441,442,443,446,447,448,449,450,451,452,453,454
%N Numbers whose base12 digits d(m), d(m1), ..., d(0) have #(pits) > #(peaks); see Comments.
%C A pit is an index i such that d(i1) > d(i) < d(i+1); a peak is an index i such that d(i1) < d(i) > d(i+1). The sequences A296888A296890 partition the natural numbers. See the guides at A296712 and A296882.
%H Clark Kimberling, <a href="/A296889/b296889.txt">Table of n, a(n) for n = 1..10000</a>
%e The base12 digits of 43502 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 43502 is in the sequence.
%t z = 200; b = 12;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], 2] == Count[d[#], 2] &] (* A296888 *)
%t Select[Range [z], Count[d[#], 2] < Count[d[#], 2] &] (* A296889 *)
%t Select[Range [z], Count[d[#], 2] > Count[d[#], 2] &] (* A296890 *)
%Y Cf. A296882, A296712, A296888, A296890.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 10 2018
