%I #12 Jan 23 2023 02:48:11
%S 37,38,39,40,41,73,74,75,76,77,80,81,82,83,109,110,111,112,113,116,
%T 117,118,119,123,124,125,145,146,147,148,149,152,153,154,155,159,160,
%U 161,166,167,181,182,183,184,185,188,189,190,191,195,196,197,202,203
%N Numbers whose base6 digits d(m), d(m1), ..., d(0) have #(pits) > #(peaks); see Comments.
%C A pit is an index i such that d(i1) > d(i) < d(i+1); a peak is an index i such that d(i1) < d(i) > d(i+1). The sequences A296870A296872 partition the natural numbers. See the guides at A296882 and A296712.
%H Clark Kimberling, <a href="/A296871/b296871.txt">Table of n, a(n) for n = 1..10000</a>
%e The base6 digits of 203 are 5,3,5; here #(pits) = 1 and #(peaks) = 0, so 203 is in the sequence.
%t z = 200; b = 6;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], 2] == Count[d[#], 2] &] (* A296870 *)
%t Select[Range [z], Count[d[#], 2] < Count[d[#], 2] &] (* A296871 *)
%t Select[Range [z], Count[d[#], 2] > Count[d[#], 2] &] (* A296872 *)
%Y Cf. A296882, A296712, A296870, A296872.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 09 2018
