%I
%S 1,56,352,2272,24367,214243,1814475,16388418,145662798,1283040020,
%T 11388192153,100991700847,894257496305,7925024787690,70234695528016,
%U 622313524112136,5514444029670513,48865557550124217,433004012881546047
%N Number of nX4 0..1 arrays with each 1 adjacent to 2, 3 or 4 king-move neighboring 1s.
%C Column 4 of A296827.
%H R. H. Hardin, <a href="/A296823/b296823.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) +11*a(n-2) +119*a(n-3) -495*a(n-4) -1212*a(n-5) -561*a(n-6) +9675*a(n-7) +13189*a(n-8) -12493*a(n-9) -48897*a(n-10) -21274*a(n-11) +54616*a(n-12) +30811*a(n-13) +2774*a(n-14) -30438*a(n-15) -26966*a(n-16) -35167*a(n-17) +50583*a(n-18) +47084*a(n-19) -48656*a(n-20) +23360*a(n-21) +138753*a(n-22) +60554*a(n-23) -62812*a(n-24) +16492*a(n-25) +91061*a(n-26) -28629*a(n-27) -32305*a(n-28) +2728*a(n-29) +6354*a(n-30) -3748*a(n-31) +1167*a(n-32) +176*a(n-33) -45*a(n-34) -7*a(n-35)
%e Some solutions for n=5
%e ..0..0..0..0. .1..1..1..1. .1..0..0..0. .1..0..0..0. .0..1..0..0
%e ..0..1..0..0. .1..0..1..1. .1..1..1..1. .1..1..1..0. .1..1..0..0
%e ..1..0..1..1. .0..0..0..0. .0..0..0..1. .1..0..0..1. .0..1..1..0
%e ..1..0..1..0. .0..1..1..0. .1..1..1..0. .1..0..0..1. .0..0..1..0
%e ..0..1..0..0. .0..0..1..0. .1..0..1..0. .0..1..1..0. .0..0..0..0
%Y Cf. A296827.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 21 2017
|