%I
%S 60,120,121,180,181,182,240,241,242,243,300,301,302,303,304,360,361,
%T 362,363,364,365,420,421,422,423,424,425,426,480,481,482,483,484,485,
%U 486,487,540,541,542,543,544,545,546,547,548,600,601,602,603,604,605,606
%N Numbers n whose base60 digits d(m), d(m1), ..., d(0) have #(rises) < #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296762A296764 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296767/b296767.txt">Table of n, a(n) for n = 1..10000</a>
%e The base60 digits of 10921 are 3, 2, 1; here #(rises) = 0 and #(falls) = 2, so that 10921 is in the sequence.
%t z = 200; b = 60; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296765 *)
%t Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296766 *)
%t Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296767 *)
%Y Cf. A296765, A296766, A296712.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 08 2018
