login
Number of nX5 0..1 arrays with each 1 adjacent to 3 or 6 king-move neighboring 1s.
1

%I #4 Dec 10 2017 11:03:39

%S 1,6,13,23,68,162,343,864,2075,4715,11332,27032,63289,150185,356088,

%T 845066,2001445,4729763,11313308,26839052,63348543,152575504,

%U 363231490,857562898,2082301478,4983700747,11785221680,28919297267,69747046028

%N Number of nX5 0..1 arrays with each 1 adjacent to 3 or 6 king-move neighboring 1s.

%C Column 5 of A296313.

%H R. H. Hardin, <a href="/A296310/b296310.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-2) +67*a(n-3) -59*a(n-4) -62*a(n-5) -1809*a(n-6) +1341*a(n-7) +1511*a(n-8) +25586*a(n-9) -14845*a(n-10) -18705*a(n-11) -209575*a(n-12) +85588*a(n-13) +130544*a(n-14) +1061484*a(n-15) -269421*a(n-16) -562999*a(n-17) -3499136*a(n-18) +417881*a(n-19) +1591445*a(n-20) +7763653*a(n-21) -11662*a(n-22) -3001912*a(n-23) -11769729*a(n-24) -1191122*a(n-25) +3833180*a(n-26) +12194217*a(n-27) +2198725*a(n-28) -3499229*a(n-29) -8621478*a(n-30) -1899439*a(n-31) +2529304*a(n-32) +4247435*a(n-33) +883792*a(n-34) -1505136*a(n-35) -1540053*a(n-36) -247920*a(n-37) +665714*a(n-38) +420856*a(n-39) +55872*a(n-40) -202184*a(n-41) -80280*a(n-42) -10232*a(n-43) +41448*a(n-44) +9568*a(n-45) +1056*a(n-46) -5344*a(n-47) -640*a(n-48) -128*a(n-49) +384*a(n-50)

%e Some solutions for n=5

%e ..0..0..1..1..0. .0..1..1..0..0. .0..0..1..0..0. .0..0..0..1..1

%e ..0..0..1..1..0. .1..0..1..1..1. .1..1..1..1..1. .1..1..0..1..1

%e ..0..0..0..0..0. .1..1..1..1..1. .1..1..1..1..1. .1..1..0..0..0

%e ..0..0..0..1..1. .0..1..1..0..0. .0..0..1..0..0. .0..0..0..0..0

%e ..0..0..0..1..1. .0..1..1..0..0. .0..0..0..0..0. .0..0..0..0..0

%Y Cf. A296313.

%K nonn

%O 1,2

%A _R. H. Hardin_, Dec 10 2017