The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295909 Number of (not necessarily maximum) cliques in the n X n black bishop graph. 1
 2, 4, 14, 30, 82, 160, 386, 718, 1646, 3000, 6742, 12190, 27194, 49024, 109082, 196446, 436726, 786232, 1747406, 3145486, 6990242, 12582624, 27961714, 50331310, 111847742, 201326200, 447392006, 805305918, 1789569226, 3221224960, 7158278282, 12884901310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Eric Weisstein's World of Mathematics, Black Bishop Graph Eric Weisstein's World of Mathematics, Clique Index entries for linear recurrences with constant coefficients, signature (2, 4, -10, 1, 8, -4). FORMULA a(n) = ((-2)^(n + 1) + (-1)^n + 19*2^(n + 1) - 6*n*(n + 4) - 25)/12. a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) + a(n-4) + 8*a(n-5) - 4*a(n-6). G.f.: -2*x*(-1 + x^2 - 3*x^3 - 2*x^4 + 2*x^5)/((-1 + x)^3 (-1 - x + 4*x^2 + 4*x^3)). MATHEMATICA Table[((-2)^(n + 1) + (-1)^n + 19 2^(n + 1) - 6 n (n + 4) - 25)/12, {n, 20}] LinearRecurrence[{2, 4, -10, 1, 8, -4}, {2, 4, 14, 30, 82, 160}, 20] CoefficientList[Series[-2 (-1 + x^2 - 3 x^3 - 2 x^4 + 2 x^5)/((-1 + x)^3 (-1 - x + 4 x^2 + 4 x^3)), {x, 0, 20}], x] CROSSREFS Sequence in context: A323656 A304341 A263987 * A095977 A129744 A148257 Adjacent sequences:  A295906 A295907 A295908 * A295910 A295911 A295912 KEYWORD nonn AUTHOR Eric W. Weisstein, Nov 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 07:24 EST 2020. Contains 331241 sequences. (Running on oeis4.)