login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296172.
4

%I #8 Oct 13 2020 11:51:09

%S 1,3,48,3271,575163,185377116,93039467356,66505075585875,

%T 63970743282062646,79580632411431634441,124299284968805234137968,

%U 238188439678208173206500760,549611050835556942751087049225,1503700734638162443238902233252144,4814751647416985610768723994195186728,17841762828286483988438913318683740082187,75777421917902616009655480827109144353730842

%N G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296172.

%C E.g.f. G(x) of A296172 satisfies: [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.

%H Paul D. Hanna, <a href="/A295813/b295813.txt">Table of n, a(n) for n = 1..200</a>

%F G.f. is the series reversion of the logarithm of the e.g.f. of A296172.

%F a(n) ~ sqrt(1-c) * 3^(3*n - 3) * n^(2*n - 7/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n - 3) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - _Vaclav Kotesovec_, Oct 13 2020

%e G.f.: A(x) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...

%e The series reversion equals the logarithm of the e.g.f. of A296172, which begins:

%e Series_Reversion(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 +...+ A296173(n)*x^n +...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(serreverse(log(Ser(A))), n)}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A296172, A296173, A295812, A295814.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Dec 09 2017