login
Number of nX5 0..1 arrays with each 1 adjacent to 0 or 2 king-move neighboring 1s.
1

%I #4 Nov 27 2017 07:12:27

%S 13,123,665,5263,37897,262707,1905471,13577504,96726819,692170604,

%T 4940333676,35278772122,252010713334,1799646642508,12852977396156,

%U 91796379668972,655591261804564,4682182568641239,33439719466609663

%N Number of nX5 0..1 arrays with each 1 adjacent to 0 or 2 king-move neighboring 1s.

%C Column 5 of A295781.

%H R. H. Hardin, <a href="/A295778/b295778.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) +2*a(n-2) -10*a(n-3) -408*a(n-4) +303*a(n-5) +1027*a(n-6) +905*a(n-7) +128*a(n-8) -5240*a(n-9) -261*a(n-10) +3150*a(n-11) -1753*a(n-12) +522*a(n-13) +691*a(n-14) +1536*a(n-15) +1326*a(n-16) -327*a(n-17) +802*a(n-18) -212*a(n-19) -739*a(n-20) -14*a(n-21) +4*a(n-22)

%e Some solutions for n=5

%e ..0..1..0..0..0. .0..1..0..1..1. .1..0..1..0..1. .0..0..0..0..0

%e ..0..0..0..1..0. .1..1..0..0..1. .0..0..0..0..0. .0..0..0..0..0

%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0

%e ..0..1..1..0..1. .0..0..0..0..0. .0..0..1..0..0. .0..0..0..0..0

%e ..0..0..1..0..0. .1..0..1..0..0. .0..0..1..1..0. .1..0..1..0..1

%Y Cf. A295781.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 27 2017