Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Nov 26 2017 09:28:59
%S 2,4,4,8,16,8,16,57,57,16,32,209,385,209,32,64,768,2580,2580,768,64,
%T 128,2816,17364,31985,17364,2816,128,256,10329,116902,396571,396571,
%U 116902,10329,256,512,37889,786804,4919857,9056598,4919857,786804,37889,512
%N T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1, 2 or 4 1s.
%C Table starts
%C ...2......4........8.........16............32..............64
%C ...4.....16.......57........209...........768............2816
%C ...8.....57......385.......2580.........17364..........116902
%C ..16....209.....2580......31985........396571.........4919857
%C ..32....768....17364.....396571.......9056598.......206899873
%C ..64...2816...116902....4919857.....206899873......8705322572
%C .128..10329...786804...61023234....4725935539....366212961052
%C .256..37889..5295555..756896741..107948235688..15405701771951
%C .512.138980.35642190.9388238587.2465745246117.648089607011677
%H R. H. Hardin, <a href="/A295716/b295716.txt">Table of n, a(n) for n = 1..264</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 3*a(n-1) +2*a(n-2) +2*a(n-3) -a(n-4) -a(n-5)
%F k=3: [order 12]
%F k=4: [order 28]
%F k=5: [order 76]
%e Some solutions for n=4 k=4
%e ..0..0..0..0....0..0..1..1....0..1..0..0....0..0..1..1....0..1..0..1
%e ..0..1..0..0....1..0..0..1....0..0..0..0....0..0..0..0....1..1..1..0
%e ..1..0..1..1....0..0..1..0....1..0..1..1....0..0..1..1....0..1..0..1
%e ..0..1..1..0....0..0..1..0....1..0..1..0....1..0..0..1....1..0..1..1
%Y Column 1 is A000079.
%Y Column 2 is A283124.
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 26 2017