Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 28 2023 04:26:27
%S 0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,0,1,0,0,
%T 0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2
%N a(n) = A295664(n) - A056169(n); 2-adic valuation of tau(n) minus the number of unitary prime divisors of n.
%H Antti Karttunen, <a href="/A295663/b295663.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F Additive with a(p) = 0, a(p^e) = A007814(1+e) if e > 1.
%F a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A007814(1+A067029(n)) + a(A028234(n)).
%F a(n) = A295664(n) - A056169(n).
%F a(n) = 0 iff A295662(n) = 0, and when A295662(n) > 0, a(n) >= A295662(n).
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} f(1/p) = 0.22852676306472099280..., where f(x) = -1 + (1-x)*(-x + Sum_{k>=0} x^(2^k-1)/(1-x^(2^k))). - _Amiram Eldar_, Sep 28 2023
%t Table[IntegerExponent[DivisorSigma[0, n], 2] - DivisorSum[n, 1 &, And[PrimeQ@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* _Michael De Vlieger_, Nov 28 2017 *)
%o (Scheme, with memoization-macro definec)
%o (definec (A295663 n) (if (= 1 n) 0 (+ (if (= 1 (A067029 n)) 0 (A007814 (+ 1 (A067029 n)))) (A295663 (A028234 n)))))
%o (define (A295663 n) (- (A295664 n) (A056169 n)))
%o (PARI) a(n) = vecsum(apply(x -> if(x == 1, 0, valuation(x+1, 2)), factor(n)[, 2])); \\ _Amiram Eldar_, Sep 28 2023
%Y Cf. A000005, A007814, A056169, A295662, A295664.
%Y Cf. A295661 (positions of nonzero terms).
%K nonn,easy
%O 1,8
%A _Antti Karttunen_, Nov 28 2017