The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294850 Number of compositions (ordered partitions) of 1 into exactly 2*n+1 powers of 1/3. 2

%I #10 Sep 20 2019 05:37:22

%S 1,1,10,217,8317,487630,40647178,4561368175,663134389930,

%T 121218250616173,27212315953140892,7359774260167595035,

%U 2360287411461166320775,885627663284464131142801,384376149675044501884907410,191068288010770323577312291141

%N Number of compositions (ordered partitions) of 1 into exactly 2*n+1 powers of 1/3.

%H Alois P. Heinz, <a href="/A294850/b294850.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = [x^(3^n)] (Sum_{j=0..2*n+1} x^(3^j))^(2*n+1).

%F a(n) ~ c * d^n * n^(2*n + 3/2), where d = 0.28934785344292228780991..., c = 1.984098413887380996408... - _Vaclav Kotesovec_, Sep 20 2019

%e a(0) = 1: [1].

%e a(1) = 1: [1/3,1/3,1/3].

%e a(2) = 10: [1/3,1/3,1/9,1/9,1/9], [1/3,1/9,1/3,1/9,1/9], [1/3,1/9,1/9,1/3,1/9], [1/3,1/9,1/9,1/9,1/3], [1/9,1/3,1/3,1/9,1/9], [1/9,1/3,1/9,1/3,1/9], [1/9,1/3,1/9,1/9,1/3], [1/9,1/9,1/3,1/3,1/9], [1/9,1/9,1/3,1/9,1/3], [1/9,1/9,1/9,1/3,1/3].

%Y Column k=2 of A294746.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Nov 09 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 13:22 EDT 2024. Contains 372736 sequences. (Running on oeis4.)