|
|
A294764
|
|
Number of permutations of [n] avoiding {2143, 3142, 1234}.
|
|
0
|
|
|
1, 1, 2, 6, 21, 73, 247, 821, 2704, 8868, 29030, 94960, 310531, 1015359, 3319829, 10854379, 35488838, 116031978, 379370276, 1240362982, 4055405209, 13259272613, 43351600979, 141739396705, 463421329340, 1515170329456, 4953896123490, 16196916164572, 52956316947055, 173142311541835
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..29.
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 111.
Index entries for linear recurrences with constant coefficients, signature (7,-18,24,-19,9,-2).
|
|
FORMULA
|
4*a(n) = n+1-n^2 -A175005(n) +A175005(n+1), n>0. - R. J. Mathar, Nov 05 2021
|
|
MAPLE
|
((x^3-2*x^2+3*x-1)^2)/((2*x^3-3*x^2+4*x-1)*(x-1)^3) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
|
|
CROSSREFS
|
Sequence in context: A116826 A116760 A116828 * A116837 A116781 A047106
Adjacent sequences: A294761 A294762 A294763 * A294765 A294766 A294767
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
R. J. Mathar, Nov 08 2017
|
|
STATUS
|
approved
|
|
|
|