Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Nov 10 2017 21:47:10
%S 53295,119301,229245,399993,608235,623645,1462731,2324495,3696189,
%T 3973145,4482879,5356445,5920971,6249633,7588977,8270385,10160943,
%U 10450121,10505373,13185969,13630011,13760929,14935029,19095395,20280795,22566271,23131549,23408259,24778401
%N Squarefree products of k primes that are symmetrically distributed around their average. Case k = 5.
%H Robert Israel, <a href="/A294752/b294752.txt">Table of n, a(n) for n = 1..3560</a>
%e 53295 = 3*5*11*17*19. Prime factors average is (3 + 5 + 11 + 17 + 19)/5 = 11 and 3 + 8 = 11 = 19 - 8, 5 + 6 = 11 = 17 - 6.
%p with(numtheory): P:=proc(q,h) local a,b,k,n,ok;
%p for n from 2*3*5*7*11 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
%p if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1;
%p for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,5);
%p # Alternative:
%p N:= 10^8: # to get all terms <= N
%p M:= floor((8*N/15)^(1/3)):
%p P:= select(isprime, [seq(i,i=3..M,2)]): nP:= nops(P):
%p Res:= NULL:
%p for i3 from 3 to nP-2 do
%p p3:= P[i3];
%p for i1 from 1 to i3-2 do
%p if isprime(2*p3 - P[i1]) then
%p for i2 from i1+1 to i3-1 do
%p if isprime(2*p3 - P[i2]) then
%p v:=P[i1]*P[i2]*p3*(2*p3-P[i2])*(2*p3-P[i1]);
%p if v <= N then Res:= Res, v fi
%p fi
%p od
%p fi
%p od
%p od:
%p sort([Res]): # _Robert Israel_, Nov 10 2017
%o (PARI) isok(n, nb=5) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ _Michel Marcus_, Nov 10 2017
%Y Subsequence of A046387, A203614.
%Y Cf. A006881 (k=2), A262723 (k=3), A294751 (k=4), A294776 (k=6).
%K nonn
%O 1,1
%A _Paolo P. Lava_, Nov 08 2017
%E More terms from _Giovanni Resta_, Nov 09 2017
%E Missing term 23131549 inserted by _Robert Israel_, Nov 10 2017