%I #23 May 31 2021 03:24:38
%S 7,4,1,0,1,8,7,5,0,8,8,5,0,5,5,6,1,1,7,9,5,8,2,8,7,2,6,5,6,2,7,1,0,6,
%T 9,0,8,2,9,2,0,2,7,1,2,6,8,7,7,5,3,8,8,9,8,1,7,0,9,9,0,3,2,7,6,2,1,7,
%U 9,8,4,9,2,6,4,7,3,6,5,0,8,4,6,8,3,6,1,1,3,8,1,1,4,5,6,8,0,4,8,7,5,3,8,4,3,8
%N Decimal expansion of (3/2)*log(3) - Pi/(2*sqrt(3)).
%C This is the limit of the series V(3,2) := Sum_{k>=0} 1/((k + 1)*(3*k + 1)) = Sum_{k>=0} 1/A049450(k+1) = (1/2)*Sum_{k>=0} (3/(3*k + 1) - 1/(k+1)) with partial sums given in A250328(n+1)/A294513(n).
%D Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193, with v_2(3) = (1/3)*V(3,2).
%F Equals V(3,2) = Sum_{k>=0} 1/((k + 1)*(3*k + 1)).
%F Equals Sum_{k>=2} zeta(k)/3^(k-1). - _Amiram Eldar_, May 31 2021
%e 0.7410187508850556117958287265627106908292027126877538898170990327...
%t RealDigits[N[(3/2)*Log[3] - Pi/(2*Sqrt[3]), 157]][[1]] (* _Georg Fischer_, Apr 04 2020 *)
%o (PARI) (3/2)*log(3) - Pi/(2*sqrt(3)) \\ _Michel Marcus_, Nov 02 2017
%Y Cf. A049450, A250328/A294513.
%K nonn,cons
%O 0,1
%A _Wolfdieter Lang_, Nov 02 2017
%E a(100) ff. corrected by _Georg Fischer_, Apr 04 2020
%E Data truncated by _Sean A. Irvine_, Apr 10 2020