login
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2

%I #9 Nov 01 2017 20:54:32

%S 1,3,14,31,62,113,198,337,564,933,1532,2503,4078,6628,10756,17437,

%T 28249,45745,74056,119866,193990,313927,507991,821995,1330066,2152144,

%U 3482296,5634529,9116919,14751546,23868566,38620216,62488889,101109215,163598217,264707548

%N Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.

%C The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences.

%C Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.

%e a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that

%e a(2) = a(1) + a(0) + 2*b(1) + b(n-2) = 14

%e Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17,...)

%t mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

%t a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;

%t a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + b[n - 2];

%t b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

%t Table[a[n], {n, 0, 40}] (* A294420 *)

%t Table[b[n], {n, 0, 10}]

%Y Cf. A293076, A293765, A294414.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Oct 31 2017