The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294315 a(n) = 3*n^3 + n^2. 1
 0, 4, 28, 90, 208, 400, 684, 1078, 1600, 2268, 3100, 4114, 5328, 6760, 8428, 10350, 12544, 15028, 17820, 20938, 24400, 28224, 32428, 37030, 42048, 47500, 53404, 59778, 66640, 74008, 81900, 90334, 99328, 108900, 119068, 129850, 141264, 153328, 166060, 179478 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS All terms are even. LINKS Muniru A Asiru, Table of n, a(n) for n = 0..10000 (first 1000 terms from Colin Barker) Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 3*n^3 + n^2. a(n) = A117642(n) + A000290(n). a(n) = 2*A036659(n). From Colin Barker, Dec 11 2017: (Start) G.f.: 2*x*(2 + 6*x + x^2) / (1 - x)^4. a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End) EXAMPLE a(3)=90 because 3*3^3 + 3^2 = 3*27 + 9 = 90. MATHEMATICA Array[3 #^3 + #^2 &, 40, 0] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 28, 90}, 40] (* or *) CoefficientList[Series[2 x (2 + 6 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* Michael De Vlieger, Dec 12 2017 *) PROG (PARI) a(n) = 3*n^3 + n^2; (PARI) concat(0, Vec(2*x*(2 + 6*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 11 2017 (GAP) A294315:=List([0..10^4], n -> 3 *n^3 + n^2 ); # Muniru A Asiru, Dec 11 2017 CROSSREFS Cf. A117642, A000290, A036659. Sequence in context: A005634 A183485 A183437 * A263239 A296015 A187452 Adjacent sequences:  A294312 A294313 A294314 * A294316 A294317 A294318 KEYWORD nonn,easy AUTHOR Jason Morgan, Oct 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 08:16 EDT 2021. Contains 347664 sequences. (Running on oeis4.)