login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294046 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(1/(1-x)^k - 1). 5

%I

%S 1,1,0,1,1,0,1,2,3,0,1,3,10,13,0,1,4,21,68,73,0,1,5,36,195,580,501,0,

%T 1,6,55,424,2241,5912,4051,0,1,7,78,785,6136,30483,69784,37633,0,1,8,

%U 105,1308,13705,104544,476469,933200,394353,0,1,9,136,2023,26748

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(1/(1-x)^k - 1).

%H Seiichi Manyama, <a href="/A294046/b294046.txt">Antidiagonals n = 0..139, flattened</a>

%F A(0,k) = 1 and A(n,k) = k * (n-1)! * Sum_{j=1..n} binomial(j+k-1,k)*A(n-j,k)/(n-j)! for n > 0.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 3, 4, ...

%e 0, 3, 10, 21, 36, ...

%e 0, 13, 68, 195, 424, ...

%e 0, 73, 580, 2241, 6136, ...

%e 0, 501, 5912, 30483, 104544, ...

%t A[0, _] = 1; A[n_, k_] := k*(n-1)!*Sum[Binomial[j+k-1, k]*A[n-j, k]/(n-j)!, {j, 1, n}];

%t Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-Fran├žois Alcover_, Nov 03 2017 *)

%Y Columns k=0..5 give A000007, A000262, A136658, A202826, A294050, A294051.

%Y Rows n=0..2 give A000012, A001477, A014105.

%Y Main diagonal gives A294047.

%Y Cf. A291709.

%K nonn,tabl

%O 0,8

%A _Seiichi Manyama_, Oct 22 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 15:26 EDT 2020. Contains 335729 sequences. (Running on oeis4.)