login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the integer k that minimizes |k/Fibonacci(n) - 2/5|.
3

%I #7 Feb 17 2018 20:05:59

%S 0,0,0,1,1,2,3,5,8,14,22,36,58,93,151,244,395,639,1034,1672,2706,4378,

%T 7084,11463,18547,30010,48557,78567,127124,205692,332816,538508,

%U 871324,1409831,2281155,3690986,5972141,9663127,15635268,25298394,40933662,66232056

%N a(n) is the integer k that minimizes |k/Fibonacci(n) - 2/5|.

%H Clark Kimberling, <a href="/A293641/b293641.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, -1, -2, 1, 2, -1, -2, 1, 1)

%F G.f.: -((x^3 (1 - x^2 + x^4))/((-1 + x + x^2) (1 - x^2 + x^4 - x^6 + x^8))).

%F a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + a(n-5) + 2 a(n-6) - a(n-7) - 2 a(n-8) + a(n-9) + a(n-10) for n >= 11.

%F a(n) = floor(1/2 + 2*Fibonacci(n)/5).

%F a(n) = A293639(n) if (fractional part of 2*F(n)/5) < 1/2, otherwise a(n) = A293640(n).

%t z = 120; r = 2/5; f[n_] := Fibonacci[n];

%t Table[Floor[r*f[n]], {n, 0, z}]; (* A293639 *)

%t Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293640 *)

%t Table[Round[r*f[n]], {n, 0, z}]; (* A293641 *)

%Y Cf. A000045, A293639, A293640.

%K nonn,easy

%O 0,6

%A _Clark Kimberling_, Oct 14 2017