%I #11 Nov 13 2017 13:21:47
%S 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,10,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,14,1,
%T 1,1,8,1,1,1,3,1,1,1,2,2,1,1,10,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,66,1,1,
%U 1,2,1,1,1,12,1,1,2,2,1,1,1,10,10,1,1,2,1,1,1,3,1,2,1,2,1,1,1,14,1,2,2,8,1,1,1,3,1,1,1,12,1,1,1,10,1,1,1,2,2
%N a(n) = Product_{d^k|n, d>1, k>1} prime(A286561(n,d)-1), where A286561(n,d) gives the highest exponent of d dividing n.
%H Antti Karttunen, <a href="/A293515/b293515.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = Product_{d|n, d>1} A008578(A286561(n,d)).
%F a(n) = A064989(A293514(n)).
%F Other identities. For all n >= 1:
%F 1 + A001222(a(n)) = A046951(n).
%o (PARI) A293515(n) = { my(m=1,v); fordiv(n,d,if(d>1, v = valuation(n,d); if(v>1, m *= prime(v-1)))); m; };
%Y Cf. A000040, A008578, A286561.
%Y Cf. A293514, A294875.
%Y Cf. A046951.
%K nonn
%O 1,4
%A _Antti Karttunen_, Nov 11 2017