login
a(n) = Product_{d^k|n, d>1, k>1} prime(A286561(n,d)-1), where A286561(n,d) gives the highest exponent of d dividing n.
5

%I #11 Nov 13 2017 13:21:47

%S 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,10,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,14,1,

%T 1,1,8,1,1,1,3,1,1,1,2,2,1,1,10,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,66,1,1,

%U 1,2,1,1,1,12,1,1,2,2,1,1,1,10,10,1,1,2,1,1,1,3,1,2,1,2,1,1,1,14,1,2,2,8,1,1,1,3,1,1,1,12,1,1,1,10,1,1,1,2,2

%N a(n) = Product_{d^k|n, d>1, k>1} prime(A286561(n,d)-1), where A286561(n,d) gives the highest exponent of d dividing n.

%H Antti Karttunen, <a href="/A293515/b293515.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(n) = Product_{d|n, d>1} A008578(A286561(n,d)).

%F a(n) = A064989(A293514(n)).

%F Other identities. For all n >= 1:

%F 1 + A001222(a(n)) = A046951(n).

%o (PARI) A293515(n) = { my(m=1,v); fordiv(n,d,if(d>1, v = valuation(n,d); if(v>1, m *= prime(v-1)))); m; };

%Y Cf. A000040, A008578, A286561.

%Y Cf. A293514, A294875.

%Y Cf. A046951.

%K nonn

%O 1,4

%A _Antti Karttunen_, Nov 11 2017