Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 11 2023 10:45:16
%S 1,1,2,5,9,18,37,74,148,296,591,1182,2365,4730,9459,18919,37837,75674,
%T 151349,302698,605396,1210791,2421583,4843165,9686330,19372660,
%U 38745321,77490641,154981283,309962566,619925131,1239850262,2479700525,4959401049,9918802098
%N The integer k that minimizes |k/2^n - sqrt(1/3)|.
%H Clark Kimberling, <a href="/A293329/b293329.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = floor(1/2 + r*2^n), where r = sqrt(1/3).
%F a(n) = A293327(n) if (fractional part of r*2^n) < 1/2, else a(n) = A293328(n).
%t z = 120; r = Sqrt[1/3];
%t Table[Floor[r*2^n], {n, 0, z}]; (* A293327 *)
%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293328 *)
%t Table[Round[r*2^n], {n, 0, z}]; (* A293329 *)
%Y Cf. A002194, A094386, A293327, A293328.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_, Oct 10 2017