login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of adventitious quadrangles (convex, noncyclic, not kite) such that Pi/n is the largest number that divides all the angles.
0

%I #15 Oct 23 2017 21:13:21

%S 0,0,0,0,0,0,0,1,0,2,0,12,0,9,0,14,0,75,0,26,0,35,0,110,0,54,0,57,0,

%T 436

%N Number of adventitious quadrangles (convex, noncyclic, not kite) such that Pi/n is the largest number that divides all the angles.

%C "All the angles" in the title means any angle formed by 3 vertices. There are 8 nonoverlapping angles in total.

%C Consider convex quadrilateral ABCD. Let a,b,c,d,e,f,g,h be the angles ABD,DBC,BCA,ACD,CDB,BDA,DAC,CAB, respectively. A quadrangle is adventitious if all these angles are rational multiples of Pi.

%C Cyclic quadrilaterals have properties a=d, b=g, c=f, e=h, thus making the adventitious case trivial.

%C Kites have properties a=b, c=h, d=g, e=f, thus making the adventitious case trivial.

%C Some properties:

%C 1. b+c = f+g := x, d+e = h+a := y, x+y = Pi.

%C 2. sin(a)sin(c)sin(e)sin(g) = sin(b)sin(d)sin(f)sin(h).

%C 3. In an adventitious quadrangle, swapping angles (b,c) with (f,g) or (a,h) with (d,e) gives another adventitious quadrangle.

%C From empirical observation, it seems that no adventitious quadrangles exist for odd numbers n. For example, take n=9: 180 degrees/9 = 20 degrees, and forming a quadrangle in which all angles are multiples of 20 degrees is impossible (proven by brute force). It seems to hold for all odd numbers n.

%C Perhaps the most famous case is Langley's problem (where n=18).

%H Kevin S. Brown's Mathpages, <a href="http://www.mathpages.com/home/kmath734/kmath734.htm">Adventitious Solutions</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Langley%E2%80%99s_Adventitious_Angles">Langley’s Adventitious Angles</a>

%e a(8) = 1 because there is one quadrangle where all angles are divisible by 180/8 = 22.5 degrees.

%e a=90, b=45, c=22.5, d=45, e=67.5, f=45, g=22.5, h=22.5.

%e a(10) = 2 (180/10 = 18):

%e 72 54 18 36 72 36 36 36

%e 108 36 18 54 72 36 18 18

%e a(12) = 12 (180/12 = 18):

%e 75 30 45 45 60 60 15 30

%e 75 60 15 45 60 30 45 30

%e 90 30 30 45 75 45 15 30

%e 90 45 15 45 75 30 30 30

%e 90 45 30 45 60 60 15 15

%e 90 45 30 75 30 45 30 15

%e 90 60 15 45 60 45 30 15

%e 105 30 15 30 105 30 15 30

%e 105 30 30 75 45 45 15 15

%e 105 45 15 30 90 45 15 15

%e 105 45 15 75 45 30 30 15

%e 120 30 15 60 75 30 15 15

%t Remove[f];

%t f[n_Integer] := Do[

%t If[A == B < n/2 - C, Continue[]];(* if A == B then C >= H *)

%t If[A == B == n/2 - C || C == D == n/2 - B, Continue[]];(* remove kite *)

%t F = n/\[Pi] ArcTan[(Sin[d] Sin[a + b])/(Sin[a] Sin[c] Sin[e]) -

%t Cot[e], 1] /. Thread[{a, b, c, d, e} -> \[Pi]/n {A, B, C, D, E}];

%t F = Round[F, 10^-6];

%t If[A < F, Continue[]];

%t If[GCD[A, B, C, D, E, F] != 1, Continue[]];

%t If[A == E && B < F, Continue[]];(* if A == E then B >= F* )

%t If[A == F && B < E, Continue[]];(* if A == F then B >= E* )

%t {A, B, C, D, E, F, B + C - F, D + E - A} // Sow;

%t , {A, n/4 // Ceiling, n - 3}

%t , {B, Max[1, n - 3 A + 2], Min[A, n - A - 2]}(* B <= A and C < A and H < A *)

%t , {C, Max[1, n - 2 A - B + 1], Min[A - 1, n - A - B - 1]}(* C < A and H < A *)

%t , {D, n - A - B - C, A - 1}(* D < A and E <= A *)

%t , {E, {n - B - C - D}}

%t ] // Reap // Last // If[# == {}, {}, # // Last] &;

%t Table[f[n] // Length, {n, 30}]

%t (* 180/n f[n] /. n -> 18 // TableForm *)

%K nonn,more

%O 1,10

%A _Albert Lau_, Oct 04 2017