login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292165 Expansion of Product_{k>=1} 1/(1 + k^2*x^k). 3

%I

%S 1,-1,-3,-6,6,5,40,11,226,-516,-186,-844,3731,-3734,814,-33819,85660,

%T -46022,210342,-411678,593996,-2980156,2076721,-3445584,40785410,

%U -37503158,98085,-271846888,336918770,-295108832,2178341296,-2404059340,6127604258

%N Expansion of Product_{k>=1} 1/(1 + k^2*x^k).

%H Alois P. Heinz, <a href="/A292165/b292165.txt">Table of n, a(n) for n = 0..3145</a>

%F Convolution inverse of A092484.

%F From _Vaclav Kotesovec_, Sep 10 2017: (Start)

%F a(n) ~ (-1)^n * c * 3^(2*n/3), where

%F c = 0.717271758899891528435966115495396784611147877234945... if mod(n,3)=0

%F c = 0.387695187106751505296020614217498222070185848125472... if mod(n,3)=1

%F c = 0.241939482775588594057384356004734639024152664456553... if mod(n,3)=2

%F (End)

%F G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*j^(2*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 18 2018

%p b:= proc(n, i) option remember; (m->

%p `if`(m<n, 0, `if`(n=m, i!^2, b(n, i-1)+

%p `if`(i>n, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1,

%p -add(b(n-i$2)*a(i$2), i=0..n-1))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 10 2017

%o (PARI) N=66; x='x+O('x^N); Vec(1/prod(n=1, N, 1+n^2*x^n))

%Y Cf. A077335, A092484.

%K sign

%O 0,3

%A _Seiichi Manyama_, Sep 10 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 03:31 EST 2019. Contains 329978 sequences. (Running on oeis4.)