%I
%S 1,1,3,2,34,47,208,224,352,737,7442,28658,148583,177458,763442
%N Regular triangle in which the nth row lists the least ntuple of positive integers in which the sum of any two members is a square.
%H Ajai Choudhry, <a href="https://doi.org/10.1142/S1793042115500281">Sextuples of integers whose sums in pairs are squares</a>, Int. J. Number Theory, 11, 543 (2015).
%H Gordon Hamilton, Kiran S. Kedlaya, and Henri Picciotto, <a href="https://www.maa.org/sites/default/files/pdf/awards/college.math.j.46.4.264.pdf">SquareSum Pair Partitions</a>, The College Mathematics Journal, Vol. 46, No. 4 (September 2015), pp. 264269.
%H NRICH enriching mathematics, <a href="https://nrich.maths.org/424">Pair Squares</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_070.htm">Problem 70. Set of integers whose sum of any two is a perfect square</a>, The Prime Puzzles and Problems Connection.
%H A. R. Thatcher, <a href="http://www.jstor.org/stable/3617620">Five Integers Which Sum in Pairs to Squares</a>, The Mathematical Gazette, Vol. 62, No. 419 (Mar., 1978), pp. 2529.
%e Triangle begins:
%e 1;
%e 1, 3;
%e 2, 34, 47;
%e 208, 224, 352, 737;
%e 7442, 28658, 148583, 177458, 763442;
%e ...
%Y Cf. A195854.
%K nonn,tabl,more
%O 1,3
%A _Michel Marcus_, Sep 10 2017
