login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of fractions with the anomalous cancellation property, corresponding to denominators listed in A291965.
5

%I #8 Sep 09 2017 06:11:47

%S 16,26,19,49,22,33,34,44,55,64,66,77,138,148,88,95,96,97,39,49,99,101,

%T 103,104,124,121,33,34,44,55,65,66,106,67,77,88,97,98,99,149,101,102,

%U 206,13,163,132,83,134,136,44,138,55,66,146,77,88,195,49,197,79,99,199,101,203,102,244,145,143,55,66,116,186,67,77,88,98,99,101

%N Numerators of fractions with the anomalous cancellation property, corresponding to denominators listed in A291965.

%C See A291965 for more details, comments and references.

%e The two-digit examples 16/64, 26/65, 19/95, 49/98 are well known.

%e The earliest three-digit terms of A291965 correspond to 34/136 = 4/16, 64/160 = 4/10, 138/184 = 3/4, ...

%o (PARI) /* Note: a(n) = A291966(A291965(n))! This function does not yield the n-th term, but the numerator corresponding to denominator N in A291965; if N is not in A291965, it yields zero. */ A291966(n, dn=digits(n), Dn=Set(dn))=local(Cd, sc(x)=select(t->setsearch(Cd, t), x), rd(x)=local(S=0); fromdigits(select(d->!(setsearch(Cd, d)&&!bittest(S, d)&&S+=1<<d), x))); for(d=10, n-1, gcd(d, n)>1 && #(Cd=setintersect(Set(dd=digits(d)), Dn)) && gcd(n, d)%10 ||next; rd(dd) || next; my(n1=rd(dn), d1=rd(dd), nd=digits(n1)); Cd=setintersect(Set(dd=digits(d1)), Set(nd)); if(#Cd, d*rd(nd)==n*rd(dd) && rd(dd), d*n1 == n*d1) && return(d))}

%o /* To print this sequence: */ for(N=10,500,A291966(N)&&print1(A291966(N)","))

%Y Cf. A291965, A291093/A291094, A159975/A159976, A290462/A290463.

%K nonn,base,frac

%O 1,1

%A _M. F. Hasler_, Sep 06 2017