%I #17 Jan 14 2024 00:15:07
%S 2,2,3,7,22,123,2281,221074,300492228
%N Number of maximal independent vertex sets in the n-Fibonacci cube graph.
%C The size of the smallest set, the independent domination number, is given by A291297.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciCubeGraph.html">Fibonacci Cube Graph</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_cube">Fibonacci cube</a>
%e Case n=1: The vertices are 0, 1. Each singleton vertex set is a maximal independent set, so a(1) = 2.
%e Case n=2: The vertices are 00, 01, 10. Maximal independent sets are {00} and {01, 10}, so a(2) = 2.
%e Case n=3: The vertices are 000, 001, 010, 100, 101. Maximal independent sets are {000, 101}, {010, 101}, {001, 010, 100}, so a(3)=3.
%o (Python)
%o from itertools import combinations, product
%o from networkx import empty_graph, find_cliques
%o def A291742(n):
%o v = tuple(int(q,2) for q in (''.join(p) for p in product('01',repeat=n)) if '11' not in q)
%o G = empty_graph(v)
%o e = tuple((a,b) for a, b in combinations(v,2) if (lambda m: (m&-m)^m if m else 1)(a^b))
%o G.add_edges_from(e)
%o return sum(1 for c in find_cliques(G)) # _Chai Wah Wu_, Jan 14 2024
%Y Cf. A291297, A291573.
%K nonn,more
%O 1,1
%A _Andrew Howroyd_, Aug 30 2017
%E a(9) from _Pontus von Brömssen_, Mar 06 2020