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Abstract 

A random graph process is defined in the following way. Let Cl  

denote a set of unlabeled graphs of order n. A graph G0 not equal to 

the empty graph is called an initial graph, if the deletion of any edge 

of G0 produces a graph not in Cl.  If Cl contains the empty graph 

then the empty graph is an initial graph in Cl.  

Starting at an initial graph G0 in Cl, randomly, that is with equally 

likely probability, add an edge {u, v} to start a random walk (Gi) 

such that at each step Gi+1 = Gi {u, v} is in Cl for all i > 0. 

Let N be the number of edges such that Gi+1 = Gi {u, v} is in Cl. 

Such edges are called admissible edges. For N   0, the probability 

that edge {u, v} is selected is 1/N. If N = 0, then the graph Gi is called 

a terminal graph.  

The probability of going from a non-terminal graph Gi to Gi+1 is 

called the transition probability from Gi to Gi+1. This probability is 

the number of edges in Gi that produce Gi+1 divided by the number 

of admissible edges in Gi. 

The transition digraph for this random process is the union of all 

random walks described above. Namely, the node set for the 

transition digraph is Cl and the arc set consists of the arcs (Gi, Gi+1) 

weighted with their corresponding transition probabilities. 

In this paper Cl is defined as the set of unlabeled graphs of order n 

having at most one cycle to obtain the At Most Unicyclic Random 

Graph Process.The properties of this random process and in 

particular the properties and structure of its associated transition 

digraph are studied. 
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1. Introduction

Let Cl denote the set of unlabeled graphs of order n having at most 

one cycle (such graphs are called at most unicyclic). A graph G0 in Cl 

is called an initial graph in Cl, if the deletion of any edge of G0 

produces a graph not in Cl. If the empty graph, the graph with no edges 

and n vertices, is in Cl, then the empty graph is an initial graph. In the 

at most unicyclic case, the empty graph is the unique initial graph. 

This is in contrast to the unicyclic case where there are multiple initial 

graphs (see [1]). Next, starting at the unique initial graph G0 = 1nK  in 

Cl, randomly, that is, with equally likely probability, add an edge     

{u, v} to start a random walk (Gi) such that at each step 

Gi+1 = Gi {u, v} is in Cl for all i > 0. 

The probability that edge {u, v} in Gi is selected is 1/N, where N   0 

is the number of edges such that Gi+1 = Gi {u, v} is in Cl. Such edges 

are called admissible edges. If N = 0, then the graph Gi is called a 

terminal graph. Note that the connected unicyclic graphs are the 

terminal graphs. 

The transition digraph TD(n) for this random process is the union of 

all random walks described above. Namely, the node set for the 

transition digraph is Cl and the arc set consists of the arcs (Gi, Gi+1) 

weighted with their corresponding transition probabilities.  

For example, the transition probability for going from the graph Gi 

consisting of the 3-cycle union  n – 3 isolated vertices to the graph Gi+1 

consisting of a 3-cycle union an edge union n – 5 isolated vertices for 

n > 5 is obtained as follows.  

There are C(n – 3, 2) ways of introducing an isolated edge to Gi. The 

total number of ways of introducing an edge to Gi is        

3(n – 3) + C(n – 3, 2) = N, the number of admissible edges. Thus, the 

transition probability of going from Gi to Gi+1 is C(n – 3, 2) / N, which 

simplifies to (n – 4) / (n + 2). 

In this paper the enumerations of the order, size, and terminal graphs 

of TD(n) are studied. The planarity of TD(n) is determined. Walks in 

the underlying digraph and underlying graph of TD(n) are 

investigated. Results concerning the traceability of the underlying 

graph of TD(n) are obtained. Also studied are the probability 

distributions of various classes of graphs in Cl relative to the random 

graph process of the title. For example, the probability distribution of 

the terminal graphs is determined. As a result of these studies a 

number of open problems are formulated. 
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2. The At Most Unicyclic Random Graph Process 

In this section some properties of the at most unicyclic random graph 

process will be determined. 

(2.1) Initial graphs  

 

As already noted in the introduction this random process has only one 

initial graph, namely, the empty graph 1nK . This is clear since the 

deletion of any edge in a nonempty member of Cl results in a member 

of Cl. 

 

(2.2) Terminal graphs and their number 

 

Also noted in the introduction, the terminal graphs in this process are 

the connected unicyclic graphs of order n.  

Theorem 2.2.1. The terminal graphs for the at most unicyclic random 

graph process are the connected unicyclic graphs. 

Proof. This is seen by noting that after n steps (n edge insertions) 

starting from the initial empty graph, the graphs (nodes in TD(n)) on 

level n have n vertices and n edges. Due to the unicyclic condition, 

these graphs must be connected and unicyclic. The further insertion of 

any edge will result in the addition of one or more cycles. Thus, the 

graphs on level n are terminal graphs. ■ 

These graphs have been enumerated and the sequence of numbers of 

graphs for each order can be found as sequence A001429 in [2]. See 

Table 2.2.1 below for values for 3 < n < 14.   

Table 2.2.1 The number t of unlabeled connected unicyclic                            

graphs of order n, 3 < n < 14 

 

 

 

(2.3) Order of the transition digraph                                                                                                  

The order of the transition digraph TD(n) is by definition the number 

of graphs in Cl, that is, the number v of unlabeled graphs of order n 

having at most one cycle (see Table 2.3.3). The set Cl can be 

partitioned into the set of unicyclic graphs of order n union the set of 

forests of order n. Since both of these sets have been enumerated, the 

number v is obtained by simple addition of their respective numbers 

for a given n. For the number a of unlabeled unicyclic graphs of order 

n, see sequence A236570 in [2]. Table 2.3.1 below lists these values 

n 3 4 5 6 7 8 9 10 11 12 13   14 

t 1 2 5 13 33 89 240 657 1806 5026 13999 39260 
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for 3 < n < 14. For the number b of unlabeled forests of order n, see 

sequence A005195 in [2]. Table 2.3.2 below lists these values for          

3 < n < 14.  Table 2.3.3 is the result of v = a + b.  

Table 2.3.1 The number a of unlabeled unicyclic graphs of order n, 3 < n < 14 

 

Table 2.3.2 The number b of unlabeled forests of order n, 3 < n < 14 

 

 

Table 2.3.3 The number v of graphs of order n having                                     

at most one cycle, 3 < n < 14 

 

The sequence v for the number of at most unicyclic graphs of order n 

was submitted to The On-Line Encyclopedia of Integer Sequences [2]. 

The response was that no matches were found. 

 (2.4) Size of the transition digraph 

The size of TD(n) is not immediately apparent. However, the size is 

known for small n (1, 2, and 3) see Figure 2.4.1, n = 4 see Figure 

2.5.2, and for n = 5 see the transition matrix shown in Section 2.7.  

Note that at each terminal graph there is placed a loop with probability 

one. This indicates that a random walk remains at that terminal graph 

for all steps greater than n. The loop is counted as an arc. 

Table 2.4.1 The number E of arcs in TD(n) for n, 1 < n < 5 

  

 

 

 

n 3 4 5 6 7 8 9 10 11 12 13 14 

a 1 3 9 25 68 185 504 1379 3788 10480 29094 81193 

n 3 4 5 6 7 8 9 10 11 12 13 14 

b 3 6 10 20 37 76 153 329 710 1601 3658 8599 

n 3 4 5 6 7 8 9 10 11 12 13 14 

v 4 9 19 45 105 261 657 1708 4498 12081 32752 89792 

n 1 2 3 4 5 

E 1 2 4 13 40 
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No closed form for the size of TD(n) is known. In a comprehensive 

study of random graph processes involving graphs with bounded 

degree, algorithms are given for obtaining the order and size of the 

transition digraphs for these random graph processes [6]. Possibly 

small modifications of these algorithms could yield solutions to the 

following problem.  

Problem 2.1 What is the size of TD(n) for n > 6? 

1 1 

Figure 2.4.1 TD(n) for n = 1, 2, and 3 

1 

1 

1 

1 

1 



6 

(2.5) Planarity 

Theorem 2.5.1 TD(n) is nonplanar for n > 5 and planar for 1< n < 4. 

Proof. The digraph shown in Figure 2.5.1 is a subgraph of TD(5) and 

is homeomorphic to K3,3. Thus, TD(5) is nonplanar. Since TD(n) is 

isomorphic to a subgraph of TD(n + 1) for all n, it follows that TD(n) 

is nonplanar for n > 5. 

One has TD(4) is planar (see Figure 2.5.2) and TD(n) for 1 < n < 3 is 

planar (see Figure 2.4.1). Thus, TD(n) for 1 < n < 4 is planar. ■  

Figure 2.5.1 A nonplanar subdigraph of TD(5) 
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(2.6) Probability distributions for graphs on a given level 

Let T = [Tij], where Tij is the transition probability of going from Gi to 

Gj. This is the transition matrix for the at most unicyclic random graph 

process of order n.  

Theorem 2.6.1 The probability distributions for graphs starting at the 

initial empty graph and terminating at level k, 1 < k < n, are obtained 

as
( )

1T k

j from the first row of the k-th power of the transition matrix T.

Proof. The entry
( )T k

ij in Tk is the probability of going from node i to 

node j in k steps. Note that in TD(n) motion is directed only downward 

from level i to level i + 1 for each edge insertion. Therefore, the set of 

probabilities
( )

1T k

j provides the probability distribution for the graphs on 

level k. In particular, the set of probabilities
( )

1T n

j provides the

probability distribution for the terminal graphs of the at most unicyclic 

random graph process. ■  
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Figure 2.5.2 A planar drawing of TD(4) 
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(2.7) Transition matrix studies 

Let T denote the transition matrix for TD(4) for the at most unicyclic 

random graph process of order 4. Then,  

 

Note that for k > 4 the only non-zero probabilities that appear in Tk are 

those associated with the terminal graphs 8 and 9. This means that for 

any node in TD(4) the only directed walks of length k are those that 

start at the selected node and end at node 8 or node 9 and then go 

through the associated loop the number of times it takes to get k steps. 

Since the loop contributes nothing to the probability, Tk = T4 for all 

k > 4. The preceding generalizes to a description of the transition 

matrix for TD(n) and in particular to the following theorem. 

Theorem 2.7.1 Let T denote the transition matrix for TD(n) for the at 

most unicyclic random graph process of order n. Then,  

Tk = Tn for all k > n.  ■ 

T2 = 

T3 = T4 = 

T = 
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The transition matrix S for TD(5), the transition digraph for the at most 

unicyclic random graph process of order 5 is shown in what follows. 

This matrix has 19 rows and 19 columns. Its powers, as is the case for 

all n, will provide the probability distributions for the graphs at each 

level of the transition digraph TD(5).  

As with TD(4) and the comments about it one can say analogously 

that the powers of S satisfy Sk = S5 for all k > 5 and since TD(5) has 

five terminal graphs, the first fourteen columns of S5 are zero. The 

remaining five nonzero columns provide the probability distributions 

noted above. 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1/ 3 2 / 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1/ 2 1/ 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1/ 2 1/ 8 1/ 4 1/ 8 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 / 7 2 / 7 2 / 7 1/ 7 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 / 7 2 / 7 0 0 1/ 7 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 / 7 3 / 7 0 0 1/ 7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 6 / 7 0 1/ 7 0 0 0 0 0 0

0 0 0 0 0 0

S 

0 0 0 0 0 0 0 0 1/ 6 1/ 3 1/ 3 1/ 6 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/ 3 1/ 6 1/ 3 1/ 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/ 4 1/ 2 1/ 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The transition matrix for the 

at most unicyclic random graph process of order 5 
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0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 0 0

(4) 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

D

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The adjacency matrix D(4) for DTD(4), the underlying 

digraph of TD(4) 

(3.1) Walks in DTD(n) 

Theorem 3.1.1 (Prop. 2.5.6 [3]) The value of the ij-th entry in Dk, 

where D is the adjacency matrix of a digraph, is the number of directed 

walks in the digraph from node i to node j of length k. ■ 

 D(4)2 =  D(4)3 = 

      D(4)4 =    D(4)5 = 

3. Properties of DTD(n), the underlying digraph of TD(n)
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The fact that D(4)5 = D(4)4 is no coincidence. First note that all 

directed walks regardless of where they start must end at the terminal 

vertices 8 or 9. For walks of length k greater than 4, the walk traverses 

the loop at 8 or 9 respectively until k steps are completed. This does 

not increase the number of walks. Thus, D(4)k = D(4)4 for all k > 4. 

The generalization D(n)k = D(n)n for all k > n is obvious.     

4. Properties of GTD(n), the underlying graph of TD(n)

0 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 1 0 0 1 1 1 0 0

(4) 0 0 1 1 0 0 0 1 1

0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 0 0

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The adjacency matrix A(4) for GTD(4), the underlying

graph of TD(4) 

Note that GTD(n) does not have any loops and the size of GTD(n) is 

the size of DTD(n) minus the number of loops in DTD(n). 

(4.1) Walks in GTD(n) 

Theorem 4.1.1 (Prop. 2.5.4 [3]) The value of the ij-th entry in Ak, 

where A is the adjacency matrix of a graph, is the number of walks in 

the graph from vertex i to vertex j of length k. ■ 

The first five powers of A(4) are shown below. First, note that the 

diagonal entries in A(4)2 provide the vertex degree sequence of the 

vertices in GTD(4). This is so because the distinct walks of length two 

from vertex i to vertex i coincides with the number of edges incident 

to vertex i.  

In contrast to the powers of D(4), the entries in the powers of A(4) are 

varied with no closed form since partial to full back tracking walks 

produces many different walks of a given length between two vertices. 

Of special interest is the fact that the underlying graph is closely 

related to an interesting random graph process that can be defined 

where both the addition and deletion of edges account for movement 

in the associated transition digraph. This process is called the 

Reversible Random Graph Process (see [7][8]).  
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A(4)2 =  A(4)3 =

A(4)4 =  A(4)5 =

(4.2) Independent cycles in GTD(n) 

Given the size e and order v of the underlying graph GTD(n) of the 

transition digraph TD(n) the number IC of independent cycles of 

GTD(n) is obtained via the equation 

IC = e – v + 1 

TABLE 4.2.1 The number IC of independent cycles in GTD(n), the 

underlying graph of TD(n) for n = 1, 2, 3, 4, and 5 

More results on the size of GTD(n) will obviously produce 

information on the cycle structure of GTD(n). 

n 1 2 3 4 5 

IC 0 0 0 3 17 
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(4.3) Traceability of GTD(n) 

A path that contains every vertex of a graph is called a Hamilton path. 

A graph is called traceable if it contains a Hamilton path.  

See [4][5] for comparable work on traceability related to random 

graph processes of the type studied here. 

All one-edge transformation random graph processes have the 

property that the node set of the transition digraph for the process is 

naturally partitioned into the even sized nodes and the odd sized nodes, 

denoted respectively, E(n) and O(n). 

In particular, for the at most unicylic random graph process, 

|Cl (n)| = |E(n)| + |O(n)| = v 

Our basic theorem for the study of traceability of GTD(n) is the 

following. 

Theorem 4.3.1 If GTD(n) contains a Hamilton path, that is, GTD(n) 

is traceable, then 

(1) GTD(n) has at most two pendant vertices. 

(2) The Hamilton path starts (or ends) at 1nK  and ends (or starts) at 

Cn. 

(3) ||E(n)| - |O(n)|| < 1. 

In particular,

|E(n)| - |O(n)| = 0, when |Cl (n)| is even and 

|E(n)| - |O(n)| = 1, when |Cl (n)| is odd. 

(4) |Cl (n)| and n must have opposite parity. 

(5) If a vertex in GTD(n) has degree 2, then the edges incident to this 

vertex must be in every Hamilton path in GTD(n). 

Proof. If GTD(n) has a pendant (of degree 1) vertex G, then a 

Hamilton path in GTD(n) must either start or end at G. If GTD(n) has 

two pendant vertices G and H, then every Hamilton path in GTD(n) 

must start and end at these two vertices. If there is a third pendant 

vertex, no Hamilton path could cover it and GTD(n) would not be 

traceable. Thus, (1) if GTD(n) is traceable, it contains at most two 

pendant vertices. 

The vertices 1nK and Cn are pendant vertices in traceable GTD(n). 

Thus, (2). 
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Without loss of generality, let a Hamilton path in GTD(n) start at 1nK

(vertex of even size), then as one progresses along this path the 

vertices of the path alternate between even and odd size vertices. If 

||E(n)| - |O(n)|| > 1, the path will get to a point where 2 or more vertices 

of the same parity would be left to cover and this would not be possible 

due to the alternate parity requirement. Thus, (3) ||E(n)| - |O(n)|| < 1 

and clearly, |E(n)| - |O(n)| = 0, when |Cl (n)| is even and                            

|E(n)| - |O(n)| = 1, when |Cl (n)| is odd.  

 

A Hamilton path starting at 1nK , if it exists, must end at Cn with n odd 

when |Cl (n)| is even and must end at Cn with n even when |Cl (n)| is 

odd. This is seen by following the alternate parity of the vertices in the 

path. Thus, (4) |Cl (n)| and n must have opposite parity. 

 

For a vertex in GTD(n) having degree 2 to be covered by a Hamilton 

path it is necessary that the two incident edges to this vertex must also 

be in the Hamilton path. Therefore, such a pair of edges must be in 

every Hamilton path in GTD(n). ■ 

 

Theorem 4.3.2 GTD(n) is traceable for n = 1, 2, and 3 and not 

traceable for n = 4, 5, 7, 12, 13, and 14. 

 

Proof. For n = 1, 2, and 3, see Figure 2.4.1. For n = 4, see Figure 

2.5.2 and note that there are two vertices of degree 2 in GTD(4) whose 

incident edges form a 4-cycle. By (5) in Theorem 4.3.1 these four 

edges must be in every Hamilton path. Thus, GTD(4) cannot be 

traceable since a path cannot contain a 4-cycle. For n = 5, the order 

|Cl (5)| = 19 has the same parity as 5, thus by (4) in Theorem 4.3.1 

GTD(5) is not traceable. Further examining the parity relation of n and 

the order of Cl (n) yields a number of special cases where, by (4) in 

Theorem 3.4.1 will yield GTD(n) is not traceable for n = 7, 12, 13, 

and 14 (see Table 2.2.1). ■  

 

Comment A look at the known extensions of Table 2.2.1 using (4) of 

Theorem 4.3.1 will yield additional values of n for which GTD(n) is 

not traceable. 

 

Problem 4.1 Find additional theorems that will determine the 

traceability or non-traceability of GTD(n). 
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5. Concluding remarks 

 

The work done here is in the spirit of the research on random graph 

processes based on one-edge transformations of graphs that was done 

in depth in [6]. Such research leads to questions about enumeration 

and the structure of graphs. The solutions to these questions require a 

combination of theoretical and computer implementation techniques. 

Although not investigated here, there are interesting applications that 

can be followed up on. Two such examples are the study of biological 

and chemical networks [9]-[11][12]-[13]. The basic structural 

evolution in random graph processes is a natural inducement to seek 

applications. 
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