%I #8 Oct 01 2018 21:09:28
%S 8,2,3,2,5,2,7,2,3,2,8,2,8,2,3,2,8,2,8,2,3,2,8,2,5,2,3,2,8,2,8,2,3,2,
%T 5,2,8,2,3,2,8,2,8,2,3,2,8,2,7,2,3,2,8,2,5,2,3,2,8,2,8,2,3,2,5,2,8,2,
%U 3,2,8,2,8,2,3,2,7,2,8,2,3,2,8,2,5,2,3,2,8,2,7,2,3,2,5,2,8,2,3,2,8,2,8,2,3
%N The arithmetic function u(n,2,7).
%H Antti Karttunen, <a href="/A291362/b291362.txt">Table of n, a(n) for n = 1..65537</a>
%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.3.
%t u[n_, m_, h_] := (d = Divisors[n]; Min[(h*Ceiling[m/d] - h + 1)*d]); Table[u[n, 2, 7], {n, 1, 70}]
%o (PARI) A291362(n, m=2, h=7) = { my(p=0,k); fordiv(n,d,k = d*(h*ceil(m/d) - h + 1); if(!p || (k < p), p = k)); (p); }; \\ _Antti Karttunen_, Oct 01 2018
%Y Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%K nonn
%O 1,1
%A _Robert Price_, Aug 23 2017
%E More terms from _Antti Karttunen_, Oct 01 2018