login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of noncube divisors of n.
2

%I #14 Jan 30 2025 03:58:22

%S 0,1,1,2,1,3,1,2,2,3,1,5,1,3,3,3,1,5,1,5,3,3,1,6,2,3,2,5,1,7,1,4,3,3,

%T 3,8,1,3,3,6,1,7,1,5,5,3,1,8,2,5,3,5,1,6,3,6,3,3,1,11,1,3,5,4,3,7,1,5,

%U 3,7,1,10,1,3,5,5,3,7,1,8,3,3,1,11,3,3,3,6,1,11,3,5,3,3,3,10,1,5,5,8,1,7,1,6,7

%N Number of noncube divisors of n.

%H Antti Karttunen, <a href="/A291208/b291208.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.

%F G.f.: Sum_{k>=1} x^A007412(k)/(1 - x^A007412(k)).

%F G.f.: Sum_{k>=1} (x^k - x^(k^3))/((1 - x^k)*(1 - x^(k^3))).

%F a(n) = A000005(n) - A061704(n).

%F From _Amiram Eldar_, Jan 30 2025: (Start)

%F Dirichlet g.f.: zeta(s) * (zeta(s) - zeta(3*s)).

%F Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(3) - 1), where gamma is Euler's constant (A001620). (End)

%e a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are noncubes {2, 4}.

%t nmax = 105; Rest[CoefficientList[Series[Sum[(x^k - x^k^3)/((1 - x^k) (1 - x^k^3)), {k, 1, nmax}], {x, 0, nmax}], x]]

%t f1[p_, e_] := e + 1; f2[p_, e_] := 1 + Floor[e/3]; a[1] = 0; a[n_] := Module[{fct = FactorInteger[n]}, Times @@ f1 @@@ fct - Times @@ f2 @@@ fct]; Array[a, 100] (* _Amiram Eldar_, Jan 30 2025 *)

%o (PARI) a(n) = sumdiv(n, d, !ispower(d, 3)); \\ _Michel Marcus_, Aug 21 2017

%Y Cf. A000005, A007412, A056595, A061704.

%Y Cf. A001620, A002117.

%K nonn,changed

%O 1,4

%A _Ilya Gutkovskiy_, Aug 21 2017