

A291025


pINVERT of the positive integers, where p(S) = 1  3*S + S^2.


2



3, 14, 62, 273, 1200, 5271, 23146, 101626, 446181, 1958880, 8600043, 37756502, 165760934, 727733433, 3194937360, 14026596927, 61580365906, 270353629378, 1186921889997, 5210892012480, 22877154557139, 100436585338334, 440942410322894, 1935850452749409
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (p(0) + 1/p(S(x)))/x. The pINVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1  S gives the "INVERT" transform of s, so that pINVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.


LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7, 13, 7, 1)


FORMULA

G.f.: (3  7 x + 3 x^2)/(1  7 x + 13 x^2  7 x^3 + x^4).
a(n) = 7*a(n1)  13*a(n2) + 7*a(n3)  a(n4).


MATHEMATICA

z = 60; s = x/(1  x)^2; p = 1  3 s + s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291025 *)


CROSSREFS

Cf. A000027, A290890.
Sequence in context: A307268 A237608 A100295 * A320499 A091701 A242637
Adjacent sequences: A291022 A291023 A291024 * A291026 A291027 A291028


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Aug 19 2017


STATUS

approved



