login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290574
Self numbers that are the product of two self numbers greater than one.
1
9, 378, 400, 525, 602, 1155, 1188, 1862, 2055, 2200, 2325, 2415, 2492, 2560, 2907, 3045, 3348, 3392, 3460, 3515, 3717, 3752, 3965, 4180, 4360, 4382, 4415, 4865, 4920, 5115, 5418, 5517, 5719, 6138, 6228, 6900, 7038, 7060, 7396, 7532, 7565, 7609, 7947, 8162, 8342, 8465, 8520, 8700, 8757, 8869, 8970, 9152, 9365, 9387, 9409, 9420, 9422, 9499, 9870, 9925
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
The product of the self numbers 31 and 75 is the self number 2325, so 2325 is in the sequence.
MATHEMATICA
Block[{nn = 10^4, s}, s = Rest@ Complement[Range@ nn, Union[Table[n + Total@ IntegerDigits@ n, {n, nn}]]]; Select[Range@ nn, Function[n, And[MemberQ[s, n], AnyTrue[Map[{#, n/#} &, Rest@ TakeWhile[Divisors@ n, # <= Sqrt@ n &]], AllTrue[#, MemberQ[s, #] &] &]]]]] (* or *)
Block[{nn = 5000, s}, s = Rest@ Complement[Range@ nn, Union@ Table[n + Total@ IntegerDigits@ n, {n, nn}]]; Select[Union@ Sort@ Map[Times @@ # &@ # &, Tuples[s, {2}]], MemberQ[s, #] &]] (* Michael De Vlieger, Aug 23 2017, after T. D. Noe at A003052 *)
PROG
(PARI) is(n)=if(!is_A003052(n), return(0)); fordiv(n, d, if(d==1, next); if(d^2>n, break); if(is_A003052(d) && is_A003052(n/d), return(1))); 0 \\ Charles R Greathouse IV, Aug 23 2017
(PARI) is_A290574(n)={is_A003052(n) && fordiv(n, d, d^2>n && break; d>1 && is_A003052(d) && is_A003052(n/d) && return(1))} \\ M. F. Hasler, Nov 09 2018
CROSSREFS
Sequence in context: A302131 A051848 A238561 * A218714 A157567 A157593
KEYWORD
nonn,base
AUTHOR
Peter Weiss, Aug 06 2017
EXTENSIONS
Corrected by Charles R Greathouse IV, Aug 23 2017
STATUS
approved