The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290173 Bases b for which there exists an integer y such that y^2 in base b looks like [c,d,c,d,c,d] for some base-b digits c, d. 4
 68, 313, 699, 4366, 51567, 234924, 686287, 3526450, 3652434, 301121223, 1250094151, 3072665429, 4507947478 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, numbers k such that A007913(1 + k^2 + k^4) < k^2, where A007913(n) is the squarefree part of n. - Giovanni Resta, Jul 27 2017 REFERENCES Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439. LINKS Table of n, a(n) for n=1..13. Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint, arXiv:1707.03894 [math.NT], July 14 2017. EXAMPLE For example, for b = 68, we have y = 160797, and the base-b representation of y^2 is (17,53,17,53,17,53). MATHEMATICA core[n_] := Block[{f = Transpose@ FactorInteger@ n}, Times @@ (f[[1]]^ Mod[f[[2]], 2])]; Select[Range[3*10^5], core[1 + # + #^2] core[1 - # + #^2] < #^2 &] (* Giovanni Resta, Jul 27 2017 *) PROG (PARI) isok(k) = core(1+k^2+k^4) < k^2; \\ Michel Marcus, Jul 28 2017 CROSSREFS Cf. A290172, A290176, A290177, A290185, A007913. Sequence in context: A200198 A237745 A237740 * A281770 A032510 A211691 Adjacent sequences: A290170 A290171 A290172 * A290174 A290175 A290176 KEYWORD nonn,base,more AUTHOR Jeffrey Shallit, Jul 23 2017 EXTENSIONS a(10)-a(13) from Giovanni Resta, Jul 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:48 EDT 2024. Contains 372743 sequences. (Running on oeis4.)