%I #9 Aug 13 2017 09:50:39
%S 1,8,54,361,2420,16227,108802,729512,4891347,32796280,219897701,
%T 1474404984,9885824398,66284043461,444431768220,2979896612959,
%U 19980083465882,133965632756376,898234023419479,6022621953315440,40381430948778393,270755823312682408
%N a(n) = (1/3)*A289795(n).
%C See A289780 for a guide to related sequences.
%H Clark Kimberling, <a href="/A289796/b289796.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7, -3, 7, -1)
%F G.f.: (1 + x + x^2)/(1 - 7 x + 3 x^2 - 7 x^3 + x^4).
%F a(n) = 7*a(n-1) - 3*a(n-2) + 7*a(n-3) - a(n-4).
%t z = 60; s = 3*x/(1 - x)^2; p = 1 - s - s^2;
%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A008585 *)
%t u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289795 *)
%t u/3 (* A289796 *)
%Y Cf. A289795, A289780.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Aug 12 2017