login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The order of the semigroup of orientation-preserving or reserving partial transformations of n elements
1

%I #8 Sep 02 2017 15:55:04

%S 1,2,9,64,549,4566,34711,243944,1622025,10402858,65219931,403119036,

%T 2469129229,15032191422,91123985023,550590488656,3318118088721,

%U 19953003487314,119759533521571,717624299625188,4293868352394261,25658433286034662,153142720988745159,913049836619756664

%N The order of the semigroup of orientation-preserving or reserving partial transformations of n elements

%C Note the typo in corollary 27 of Umar (the 2nd equal sign in the equation in the first line should be a plus).

%H V. H. Fernandes, G. M. S. Gomes, M. M. Jesus, <a href="https://doi.org/10.1016/j.jalgebra.2008.11.005">Congruences on monoids of transformations preserving the orientation on a finite chain</a>, J. Alg. 321 (3) (2009) 743-757, proposition 1.10

%H A. Umar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Umar/umar2.html">Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations</a>, J. Int. Seq. 14 (2011) # 11.7.5, corollary 27, Tables 3.1-3.3.

%p # Table 3.3 of Umar

%p A := proc(n,k)

%p if k = 0 then

%p 1;

%p else

%p 2*n*add(binomial(k-1,p-1)*binomial(n-1,p-1)*2^(n-p),p=1..k)-(n-1)*2^n-1-(k-1)*2^(n-1)*binomial(n,2) ;

%p end if ;

%p end proc:

%p A289717 := proc(n)

%p add(A(n,k),k=0..n) ;

%p end proc:

%K nonn,easy

%O 0,2

%A _R. J. Mathar_, Sep 02 2017