login
Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.
5

%I #30 Dec 20 2018 23:42:39

%S 1,1,11,11,111,111,1111,1111,11111,11111,111111,111111,1111111,

%T 1111111,11111111,11111111,111111111,111111111,1111111111,1111111111,

%U 11111111111,11111111111,111111111111,111111111111,1111111111111,1111111111111,11111111111111

%N Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A289404/b289404.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A289404/a289404.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Jul 05 2017: (Start)

%F G.f.: 1 / ((1 - x)*(1 - 10*x^2)).

%F a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>2.

%F (End)

%F Conjectures from _Federico Provvedi_, Nov 21 2018: (Start)

%F a(n) = (10^(1 + floor(n/2)) - 1)/9.

%F a(n) = (sqrt(10)^(n+1)*((sqrt(10)-1)*(-1)^n+(sqrt(10)+1))-2)/18.

%F (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 566; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Table[ca[[i, j, j]], {j, 1, i}], 10], {i, 1, stages - 1}]

%Y Cf. A289405, A052551, A032085.

%K nonn,easy

%O 0,3

%A _Robert Price_, Jul 05 2017