%I #13 Jul 02 2017 06:19:20
%S 1,-12,-108,-1344,-22044,-409752,-8201088,-172293504,-3746915388,
%T -83625518604,-1904468689368,-44079484775616,-1033852665619200,
%U -24518163456010392,-586936016770722048,-14164129272396668544,-344209494372831399036
%N Coefficients in expansion of E_2^(1/2).
%H Seiichi Manyama, <a href="/A289291/b289291.txt">Table of n, a(n) for n = 0..702</a>
%F G.f.: Product_{n>=1} (1-q^n)^(A288968(n)/2).
%F a(n) ~ c / (r^n * n^(3/2)), where r = A211342 = 0.03727681029645165815098078... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24 and c = -0.297340792206337929158904153045493466135450465337136... - _Vaclav Kotesovec_, Jul 02 2017
%Y E_k^(1/2): this sequence (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
%Y Cf. A006352 (E_2), A288968.
%K sign
%O 0,2
%A _Seiichi Manyama_, Jul 02 2017