The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks. 4

%I

%S 1,1,2,10,92,1348,28808,845800,32664944,1605553552,97868465696,

%T 7245440815264,640359291096512,66598657958731840,8051483595083729024,

%U 1119653568781387712128,177465810459239319017216,31804047327185301634148608,6398867435594240638421950976

%N Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.

%C The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0.

%H Alois P. Heinz, <a href="/A289020/b289020.txt">Table of n, a(n) for n = 0..100</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%e . a(2) = 2: /\ /\

%e . /\/ \ / \/\ .

%p b:= proc(n, j, v) option remember; `if`(n=j,

%p `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*

%p i*binomial(j-1, i-2), i=1..min(j+1, n-j))))

%p end:

%p a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):

%p seq(a(n), n=0..18);

%t b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *)

%Y Column k=1 of A288972.

%Y Cf. A000217, A060747, A281874, A287846.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jun 22 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 23:44 EDT 2020. Contains 337440 sequences. (Running on oeis4.)