$\mathrm{A} 288932=1,0,1,0,1,1,0,1,0,1,1,1,0,1,0, \ldots$

F. M. Dekking, Delft University of Technology, F.M.Dekking@math.tudelft.nl

February 15, 2021

Proof of A288932(n+1) = A308185(n)

Here is a proof of Neil Sloane's conjecture in A308185 that $a(n+1)=$ A308185 (n) for $n \geq 1$.
First we have to find a mathematical way to generate $(a(n))=$ A288932, which is created as a fixed point of the StringReplace procedure SR in Mathematica. In the case of A288932 by

$$
\operatorname{SR}(00)=1000 \quad \operatorname{SR}(10)=10101
$$

Note that we can ignore the production $00 \mapsto 1000$, because it only occurs only at the end of the iterates $\mathrm{SR}^{n}(00)$: its influence disappears in the limit as n tends to infinity. So we will consider the iterates $\mathrm{SR}^{n}(10)$: 10
$10101=\operatorname{SR}(10)$
$10101101011=\operatorname{SR}^{2}(10)$, etc.
Note that these converge to $(a(n))$.
Let β be the block substitution on the set of words $\{10, E\}^{*}$ over the alphabet $\{0,1, E\}$ given by

$$
\beta(10)=1010 E, \quad \beta(E)=E .
$$

Note that this block substitution and its iterates are well defined on $\{10, E\}^{*}$.
Let λ be the letter to letter substitution given by $\lambda(0)=0, \lambda(1)=1, \lambda(E)=1$.
CLAIM 1: $\operatorname{SR}^{n}(10)=\lambda\left(\beta^{n}(10)\right)$ for $n \geq 1$.
Proof: By induction. This is true for $n=1$. Suppose true for n. Then

$$
\begin{aligned}
\operatorname{SR}^{n+1}(10) & =\operatorname{SR}^{n}(10101)=\operatorname{SR}^{n}(10) \operatorname{SR}^{n}(10) 1 \\
& =\lambda\left(\beta^{n}(10)\right) \lambda\left(\beta^{n}(10)\right) \lambda(E) \\
& =\lambda\left(\beta^{n}(1010 E)\right) \\
& =\lambda\left(\beta^{n+1}(10)\right) .
\end{aligned}
$$

Let μ be the morphism on $\{0,1\}^{*}$ given by $\mu(0)=0101, \mu(1)=1$. The infinite fixed point of μ is the sequence A308185, by definition.
CLAIM 2: $\lambda\left(\beta^{n}(10)\right)=1 \mu^{n}(0)$ for $n \geq 1$.
Proof: By induction. For $n=1$ one has $\lambda(\beta(10))=\lambda(1010 E)=10101=1 \mu(0)$.
Suppose it holds for n. Then

$$
\begin{aligned}
\lambda\left(\beta^{n+1}(10)\right) & =\lambda\left(\beta^{n}(1010 E)\right) \\
& \left.=\lambda\left(\beta^{n}(10) \beta^{n}(10) \beta^{n}(E)\right)\right) \\
& =1 \mu^{n}(0) 1 \mu^{n}(0) 1 \\
& =1 \mu^{n}(01011) \\
& =1 \mu^{n+1}(01) .
\end{aligned}
$$

Combining CLAIM 1 with CLAIM 2, one obtains $a(n+1)=\operatorname{A308185(n)}$ for $n \geq 1$.

