$A288932 = 1,0,1,0,1,1,0,1,0,1,1,1,0,1,0,\dots$

F. M. Dekking, Delft University of Technology, F.M.Dekking@math.tudelft.nl

February 15, 2021

Proof of A288932(n+1) = A308185(n)

Here is a proof of Neil Sloane's conjecture in A308185 that a(n+1) = A308185(n) for $n \ge 1$.

First we have to find a mathematical way to generate (a(n)) = A288932, which is created as a fixed point of the StringReplace procedure SR in Mathematica. In the case of A288932 by

$$SR(00) = 1000$$
 $SR(10) = 10101.$

Note that we can ignore the production $00 \mapsto 1000$, because it only occurs only at the end of the iterates $SR^n(00)$: its influence disappears in the limit as *n* tends to infinity. So we will consider the iterates $SR^n(10)$: 10

10101 = SR(10) $10101101011 = SR^{2}(10)$, etc. Note that these converge to (a(n)).

Let β be the block substitution on the set of words $\{10, E\}^*$ over the alphabet $\{0, 1, E\}$ given by

 $\beta(10) = 1010E, \quad \beta(E) = E.$

Note that this block substitution and its iterates are well defined on $\{10, E\}^*$. Let λ be the letter to letter substitution given by $\lambda(0) = 0$, $\lambda(1) = 1$, $\lambda(E) = 1$.

CLAIM 1: $SR^n(10) = \lambda(\beta^n(10))$ for $n \ge 1$.

Proof: By induction. This is true for n = 1. Suppose true for n. Then

$$SR^{n+1}(10) = SR^n(10101) = SR^n(10)SR^n(10)1$$
$$= \lambda(\beta^n(10))\lambda(\beta^n(10))\lambda(E)$$
$$= \lambda(\beta^n(1010E))$$
$$= \lambda(\beta^{n+1}(10)).$$

Let μ be the morphism on $\{0,1\}^*$ given by $\mu(0) = 0101, \mu(1) = 1$. The infinite fixed point of μ is the sequence A308185, by definition.

CLAIM 2: $\lambda(\beta^n(10)) = 1 \mu^n(0)$ for $n \ge 1$.

Proof: By induction. For n = 1 one has $\lambda(\beta(10)) = \lambda(1010E) = 10101 = 1 \mu(0)$. Suppose it holds for n. Then

$$\lambda(\beta^{n+1}(10)) = \lambda(\beta^n(1010E)) = \lambda(\beta^n(10)\beta^n(10)\beta^n(E))) = 1 \mu^n(0)1 \mu^n(0) 1 = 1 \mu^n(01011) = 1 \mu^{n+1}(01).$$

Combining CLAIM 1 with CLAIM 2, one obtains a(n+1) = A308185(n) for $n \ge 1$.