login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288380
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 3*a(n-4) + a(n-5) for n >= 1, where a(0) = 2, a(1) = 4, a(2) = 7. a(3) = 11, a(4) = 20.
2
2, 4, 7, 11, 20, 38, 70, 130, 245, 461, 866, 1630, 3070, 5780, 10883, 20495, 38596, 72682, 136874, 257762, 485417, 914137, 1721506, 3241946, 6105242, 11497412, 21651967, 40775059, 76787732, 144606926, 272324270, 512842018, 965785885, 1818771365, 3425116610
OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0001, 1->10, starting with 00; see A288377.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 3*a(n-4) + a(n-5) for n >= 1, where a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 20.
G.f.: (-2 + 2 x - x^2 + 4 x^3 - 2 x^4)/(-1 + 3 x - 3 x^2 + 3 x^3 - 3 x^4 + x^5).
MATHEMATICA
LinearRecurrence[{3, -3, 3, -3, 1}, {2, 4, 7, 11, 20}, 40]
CROSSREFS
Cf. A288377.
Sequence in context: A024501 A160393 A018173 * A369581 A146156 A304916
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 10 2017
STATUS
approved