login
Expansion of 1/((1-x)(1-x^3)(1-x^5) ... (1-x^19)).
2

%I #15 Jan 26 2021 03:51:14

%S 1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,38,46,54,64,75,88,102,119,

%T 138,159,184,211,242,277,316,359,409,463,524,592,667,750,843,945,1057,

%U 1182,1318,1469,1635,1816,2014,2233,2470,2730,3014,3323,3659,4026

%N Expansion of 1/((1-x)(1-x^3)(1-x^5) ... (1-x^19)).

%C Number of partitions of n into odd parts less than or equal to 19.

%C Number of partitions (d1,d2,...,d10) of n such that 0 <= d1/1 <= d2/2 <= ... <= d10/10.

%H Seiichi Manyama, <a href="/A288001/b288001.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_100">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, -5, 5, -5, 6, -7, 7, -7, 8, -9, 10, -9, 11, -12, 12, -12, 13, -15, 15, -15, 16, -18, 17, -17, 18, -20, 19, -19, 20, -21, 21, -20, 21, -22, 22, -20, 22, -22, 21, -20, 21, -21, 20, -19, 19, -20, 18, -17, 17, -18, 16, -15, 15, -15, 13, -12, 12, -12, 11, -9, 10, -9, 8, -7, 7, -7, 6, -5, 5, -5, 4, -3, 3, -3, 2, -2, 2, -2, 1, -1, 1, -1, 1, 0, 1, -1).

%Y Cf. A259094.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Jun 04 2017