Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 15 2018 07:01:46
%S 1,1,19,2915,2788989,14754820185,402830065455939,54259734183964303995,
%T 34931036957548128175343565,104968042559556881090071537121985,
%U 1445701512369903326110289606343988638195,89942525814858602265845303890518923811304544595,24979493321562411847493262443987087581059026281953954525
%N Integers associated with moments of Rvachëv function.
%C a(n) is equal to the product of (2n-1)!! Product_{k=1..n}(2^(2k)-1)) and A287936(n)/A287937(n), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function.
%H J. Arias de Reyna, <a href="https://arxiv.org/abs/1702.05442">An infinitely differentiable function with compact support:Definition and properties</a>, arXiv:1702.05442 [math.CA], 2017.
%H J. Arias de Reyna, <a href="https://arxiv.org/abs/1702.06487">Arithmetic of the Fabius function</a>, arXiv:1702.06487 [math.NT], 2017.
%F a(n) = (2n-1)!!*Product_{k=1..n}(2^(2k)-1))*A287936(n)/A287937(n).
%t c[0] = 1;
%t c[n_] := c[n] =
%t Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
%t a[n_] := a[n] = c[n] (2 n + 1)!! Product[(2^(2 k) - 1), {k, 1, n}];
%t Table[a[n], {n, 0, 30}]
%t Table[(-1)^n 4^(-n) (2 n)! (2 n + 1)!! Sum[QBinomial[n, k, 1/4] 2^(-k (3 k + 1)/2)/(2 n + k + 1)! Sum[(-1)^ThueMorse[m] (2 m + 1)^(2 n + k + 1), {m, 0, 2^k - 1}], {k, 0, n}], {n, 0, 12}] (* _Vladimir Reshetnikov_, Jul 08 2018 *)
%Y Cf. A272755, A272757, A287936, A287937.
%K nonn
%O 0,3
%A _Juan Arias-de-Reyna_, Jun 03 2017