RELATIVE FREQUENCIES OF MULTIPLES OF ULAM NUMBERS

Enrique Navarrete¹

The motivation for this note is to get a first impression of the relative frequencies of multiples of Ulam numbers, sequence A002858 in OEIS. We will use two measures for this.

Let u be an Ulam number, and Let U be the set of the first 100,000 Ulam numbers (note $u_{100,000} = 1,351,223$ is the $100,000^{th}$ Ulam number). Then the first measure is to count how many Ulam numbers u satisfy $k*u \in U$. For example, for k=3, the largest Ulam number u such that $3*u \in U$ is u = 450,335, and the total of numbers u that satisfy this condition is 1,043 (see Table 1, column 2 below).

The second measure is to count for Ulam numbers u, $u \leq 100,000$, how many of them satisfy the condition that k*u is also an Ulam number. For example, for k=3, u = 99,222 is the largest $u \leq 100,000$ such that 3*u is also an Ulam number. The total of Ulam numbers u, $u \leq 100,000$ that satisfy such condition is 236 (see Table 1, column 3).

Table 1 below shows the counts for both measures. Perhaps somewhat surprisingly, there are very few values for the multiples k*u for k=2 and k=5 under both measures. In fact, sequence A068791 in OEIS lists the first Ulam numbers u such that 2*u is also an Ulam number, and to get the 30^{th} number in the sequence we have to go all the way to u = 4,867,024. Similarly, A287613 in OEIS lists Ulam numbers u such that 5*u is also an Ulam number. In contrast to these very scarce Ulam numbers with the property that k*u is also an Ulam number, the multiples k*u with such property, with very frequent values, appear for k = 4, 6, 3, and even for k = 9 and k = 7.

Table 1 also shows a simple computation of relative frequencies by dividing for each k = 2, ..., 32, the number of Ulam numbers u such that k*u is also Ulam by the total of the columns (the case k=1 was excluded; U(1,2) = an Ulam number as in A002858).

Now, which of Measure 1 or Measure is "better"?

It seems that Measure 2, since it doesn't fix the range where we are counting (ie. up to the $100,000^{th}$ Ulam number), but adjusts the range by multiplying k*u. In fact, for k = 32, we had to look up to 3,188,096 (the 236,003th Ulam number) to verify that for u = 99,628, 32*u = 3,188,096 is also an Ulam number.

¹Universidad Pontificia Bolivariana, enrique.navarrete@upb.edu.co Data for very large Ulam numbers were kindly provided by Jud McCranie.

Enrique Navarrete, © Scalar Consulting, 2017

U(1,2)	Measure 1	Measure 2	Frequency 1	Frequency 2
1*U(1,2)	100.000	7.584		
2*U(1,2)	26	22	0,14%	0,13%
3*U(1,2)	1043	236	5,48%	1,39%
4*U(1,2)	3842	1122	20,18%	6,62%
5*U(1,2)	148	74	0,78%	0,44%
6*U(1,2)	1823	827	9,58%	4,88%
7*U(1,2)	1002	540	5,26%	3,19%
8*U(1,2)	804	484	4,22%	2,86%
9*U(1,2)	983	655	5,16%	3,87%
10*U(1,2)	699	532	3,67%	3,14%
11*U(1,2)	629	520	3,30%	3,07%
12*U(1,2)	692	605	3,64%	3,57%
13*U(1,2)	597	575	3,14%	3,39%
14*U(1,2)	525	553	2,76%	3,26%
15*U(1,2)	497	553	2,61%	3,26%
16*U(1,2)	460	548	2,42%	3,23%
17*U(1,2)	446	551	2,34%	3,25%
18*U(1,2)	464	604	2,44%	3,57%
19*U(1,2)	383	519	2,01%	3,06%
20*U(1,2)	387	564	2,03%	3,33%
21*U(1,2)	332	527	1,74%	3,11%
22*U(1,2)	341	549	1,79%	3,24%
23*U(1,2)	313	539	1,64%	3,18%
24*U(1,2)	313	553	1,64%	3,26%
25*U(1,2)	332	610	1,74%	3,60%
26*U(1,2)	336	596	1,76%	3,52%
27*U(1,2)	316	576	1,66%	3,40%
28*U(1,2)	312	631	1,64%	3,72%
29*U(1,2)	275	602	1,44%	3,55%
30*U(1,2)	269	564	1,41%	3,33%
31*U(1,2)	230	548	1,21%	3,23%
32*U(1,2)	218	561	1,15%	3,31%
TOTAL	19.037	16.940	100,00%	100,00%

TABLE 1: RELATIVE FREQUENCIES FOR MULTIPLES OF ULAM NUMBERS THAT ARE ALSO ULAM NUMBERS

¹Universidad Pontificia Bolivariana, enrique.navarrete@upb.edu.co Data for very large Ulam numbers were kindly provided by Jud McCranie.

Enrique Navarrete, © Scalar Consulting, 2017