RELATIVE FREQUENCIES OF MULTIPLES OF ULAM NUMBERS

Enrique Navarrete ${ }^{1}$

The motivation for this note is to get a first impression of the relative frequencies of multiples of Ulam numbers, sequence A002858 in OEIS. We will use two measures for this.

Let u be an Ulam number, and Let U be the set of the first 100,000 Ulam numbers (note $u_{100,000}=1,351,223$ is the $100,000^{\text {th }}$ Ulam number). Then the first measure is to count how many Ulam numbers u satisfy $k * u \in U$. For example, for $k=3$, the largest Ulam number u such that $3 *_{u} \in U$ is $u=450,335$, and the total of numbers u that satisfy this condition is 1,043 (see Table 1, column 2 below).

The second measure is to count for Ulam numbers $u, u \leq 100,000$, how many of them satisfy the condition that $k * u$ is also an Ulam number. For example, for $k=3, u=99,222$ is the largest $u \leq 100,000$ such that $3 *_{u}$ is also an Ulam number. The total of Ulam numbers $u, u \leq 100,000$ that satisfy such condition is 236 (see Table 1, column 3).

Table 1 below shows the counts for both measures. Perhaps somewhat surprisingly, there are very few values for the multiples $k{ }^{*} u$ for $k=2$ and $\mathrm{k}=5$ under both measures. In fact, sequence A068791 in OEIS lists the first Ulam numbers u such that $2 * u$ is also an Ulam number, and to get the $30^{\text {th }}$ number in the sequence we have to go all the way to $u=$ 4,867,024. Similarly, A287613 in OEIS lists Ulam numbers u such that $5 *_{u}$ is also an Ulam number. In contrast to these very scarce Ulam numbers with the property that $k * u$ is also an Ulam number, the multiples $k * u$ with such property, with very frequent values, appear for $k=4,6,3$, and even for $k=9$ and $k=7$.

Table 1 also shows a simple computation of relative frequencies by dividing for each $k=2$, ..., 32 , the number of Ulam numbers u such that $k{ }^{*} u$ is also Ulam by the total of the columns (the case $k=1$ was excluded; $U(1,2)=$ an Ulam number as in A002858).

Now, which of Measure 1 or Measure is "better"?
It seems that Measure 2 , since it doesn't fix the range where we are counting (ie. up to the $100,000^{\text {th }}$ Ulam number), but adjusts the range by multiplying $k * u$. In fact, for $k=32$, we had to look up to $3,188,096$ (the $236,003^{\text {th }}$ Ulam number) to verify that for $u=99,628$, 32*u $=3,188,096$ is also an Ulam number.

U(1,2)	Measure 1	Measure 2	Frequency 1	Frequency 2
1*U(1,2)	100.000	7.584		
$2 * \cup(1,2)$	26	22	0,14\%	0,13\%
$3 * \cup(1,2)$	1043	236	5,48\%	1,39\%
4*U(1,2)	3842	1122	20,18\%	6,62\%
$5 * \cup(1,2)$	148	74	0,78\%	0,44\%
6* $\mathrm{U}(1,2)$	1823	827	9,58\%	4,88\%
$7 * \cup(1,2)$	1002	540	5,26\%	3,19\%
8* $\mathrm{U}(1,2)$	804	484	4,22\%	2,86\%
$9 * \cup(1,2)$	983	655	5,16\%	3,87\%
10*U(1,2)	699	532	3,67\%	3,14\%
$11 * \mathrm{U}(1,2)$	629	520	3,30\%	3,07\%
$12 * \mathrm{U}(1,2)$	692	605	3,64\%	3,57\%
13*U(1,2)	597	575	3,14\%	3,39\%
$14 * \mathrm{U}(1,2)$	525	553	2,76\%	3,26\%
15*U(1,2)	497	553	2,61\%	3,26\%
$16 * \mathrm{U}(1,2)$	460	548	2,42\%	3,23\%
$17 * U(1,2)$	446	551	2,34\%	3,25\%
$18 * \cup(1,2)$	464	604	2,44\%	3,57\%
19*U(1,2)	383	519	2,01\%	3,06\%
$20 * \cup(1,2)$	387	564	2,03\%	3,33\%
$21 * U(1,2)$	332	527	1,74\%	3,11\%
$22 * U(1,2)$	341	549	1,79\%	3,24\%
$23 * \cup(1,2)$	313	539	1,64\%	3,18\%
$24 * \mathrm{U}(1,2)$	313	553	1,64\%	3,26\%
$25 * \mathrm{U}(1,2)$	332	610	1,74\%	3,60\%
26*U(1,2)	336	596	1,76\%	3,52\%
$27 * \cup(1,2)$	316	576	1,66\%	3,40\%
$28 * U(1,2)$	312	631	1,64\%	3,72\%
$29 * \cup(1,2)$	275	602	1,44\%	3,55\%
$30 * U(1,2)$	269	564	1,41\%	3,33\%
$31 * U(1,2)$	230	548	1,21\%	3,23\%
$32 * U(1,2)$	218	561	1,15\%	3,31\%
TOTAL	19.037	16.940	100,00\%	100,00\%

TABLE 1: RELATIVE FREQUENCIES FOR MULTIPLES OF ULAM NUMBERS that are also ulam numbers

[^0]
[^0]: ${ }^{1}$ Universidad Pontificia Bolivariana, enrique.navarrete@upb.edu.co
 Data for very large Ulam numbers were kindly provided by Jud McCranie.

