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PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL’S TRIANGLE: 

Leo J. Borcherding 

 Developed - From: May 23, 2017 – To: Dec 17, 2020  

The function f(k,n) is a family of series all related to, and derived from the tetrahedral 

numbers (OEIS: A000292). They are all variations of tetrahedral shapes, some of which have 

been classified on the OEIS and other of which have not been classified.  

Formally, f(k, n) is defined as: 

f(k,n) is the set of all series derived from the anchored series. 

k = (All whole numbers (including negative values)) 

n = (All whole numbers >= 1) 

f(0,n) is the anchored series which generates all other series. 

List of sequences in f(k,n) which have been added to OEIS and have been applied to geometry 

f(-∞,n) = 1, -∞, f(-∞,2), f(-∞,3), f(-∞,4), f(-∞,5), f(-∞,6), f(-∞,7), ... 

... 

f(-1,n) = 1, -1, 5, -5, 15, -15, 35, -35, 70, -70 ...  NO NAME 

f(0,n)  = 1, 0, 4, 0, 10, 0, 35, ...   A000292 (variant) (ANCHOR) 

f(1,n)  = 1, 1, 4, 4, 10, 10, 35, ...   A000292 (variant) 

f(2,n)  = 1, 2, 5, 8, 14, 20, 30, ...    A006918 → A000330 (variant) 

f(3,n)  = 1, 3, 7, 13, 22, 34, 50, ...   A002623 

f(4,n)  = 1, 4, 10, 20, 35, 56, 84, ...    A000292 (original) 

f(5,n)  = 1, 5, 14, 30, 55, 91, 140, ...    A000330 

f(6,n)  = 1, 6, 19, 44, 85, 146, 231, ...   A005900 

f(7,n)  = 1, 7, 25, 63, 129, 231, 377, ...   A001845 

  f(8,n)  = 1, 8, 32, 88, 192, 360, 608, ...   A008412 

f(9,n)  = 1, 9, 40, 120, 280, 552, 968, ...   A287324 (link to paper) 

f(10,n) = 1, 10, 49, 160, 400, 832, 1520, ...   NO NAME 

f(11,n) = 1, 11, 59, 209, 560, 1232, 2352, ...  NO NAME 

... 

f(+∞,n) = 1, + ∞, f(+∞,2), f(+∞,3), f(+∞,4), f(+∞,5), f(+∞,6), f(+∞,7), ... 

 

*k is evaluated for all real numbers; therefore, the anchor series is defined as the zeroth series, 

and can be continued in the positive and negative directions* 
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In order to generate each series, the anchor function is put through an f(n) + f(n+1) process, this 

can also be interpreted as f(n) + f(n-1), which is evaluated as follows:  

a.) f(1,n) + f(1,n-1) = f(2,n)    b.) f(2,n) + f(2,n-1) = f(3,n) 

a.)                         b.) 

1    +  0   = 1          →   1    +  0   = 1 

1    +  1   = 2      →   2    +  1   = 3 

4    +  1   = 5         →   5    +  2   = 7 

4    +  4   = 8        →      8    +  5   = 13 

10  +  4   = 14          →   14  +  8   = 22 

10  +  10 = 20          →   20  +  14 = 34 

20  +  10 = 30          →   30  +  20 = 50 

20  +  20 = 40          →   40  +  30 = 70    

 ... iterate infinitely many times. 

This rule can be generalized to the entire family f(k, n): 

f(-k,n) = f(-k-1,n) + f(-k-1,n-1)   (-∞ end) 

... 

f(-1,n) = f(-2,n) + f(-2,n-1) 

f(0,n)  = f(-1,n) + f(-1,n-1) 

f(1,n)  = f(0,n)  + f(0,n-1) 

f(2,n)  = f(1,n)  + f(1,n-1) 

f(3,n)  = f(2,n)  + f(2,n-1) 

f(4,n)  = f(3,n)  + f(3,n-1) 

... 

f(k,n)  = f(k-1,n) + f(k-1,n-1)     (+∞ end) 

This statement is similar to Leonardo Bonacci's original form for the Fibonacci sequence: 

U(k+2,n) = U(k+1,n) + U(k,n) 

Most, if not all, sequences of the family f(k,n), for k<=(-1), and k>=10, have not been added to 

the OEIS and do not have names, as of the time of publishing. 

*Refer to the Figure 1 in the reading below for values of f(k,n) for all values of k* 
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PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL’S TRIANGLE: 

Figure 1: Table/Matrix of Values for f(k,n), k = (all whole numbers), n = (all whole >=1) 

 n 1 2  3 4 5 6 7 8 9 

k           

-∞ f (-∞, n) 1 -∞ f(-∞,3) f(-∞,4) f(-∞,5) f(-∞,6) f(-∞,7) f(-∞,8) f(-∞,9) 

… …          

-10 f (-10, n) 1 -10 59 -260 945 -2982 8435 -21848 52615 

-9 f (-9, n) 1 -9 49 -201 685 -2037 5453 -13413 30767 

-8 f (-8, n) 1 -8 40 -152 484 -1352 3416 -7960 17354 

-7 f (-7, n) 1 -7 32 -112 332 -868 2064 -4544 9394 

-6 f (-6, n) 1 -6 25 -80 220 -536 1196 -2480 4850 

-5 f (-5, n) 1 -5 19 -55 140 -316 660 -1284 2370 

-4 f (-4, n) 1 -4 14 -36 85 -176 344 -624 1086 

-3 f (-3, n) 1 -3 10 -22 49 -91 168 -280 462 

-2 f (-2, n) 1 -2 7 -12 27 -42 77 -112 182 

-1 f (-1, n) 1 -1 5 -5 15 -15 35 -35 70 

0 f (0, n) 1 0 4 0 10 0 20 0 35 

1 f (1, n) 1 1 4 4 10 10 20 20 35 

2 f (2, n) 1 2 5 8 14 20 30 40 55 

3 f (3, n) 1 3 7 13 22 34 50 70 95 

4 f (4, n) 1 4 10 20 35 56 84 120 165 

5 f (5, n) 1 5 14 30 55 91 140 204 285 

6 f (6, n) 1 6 19 44 85 146 231 344 489 

7 f (7, n) 1 7 25 63 129 231 377 575 833 

8 f (8, n) 1 8 32 88 192 360 608 952 1408 

9 f (9, n) 1 9 40 120 280 552 968 1560 2360 

10 f (10, n) 1 10 49 160 400 832 1520 2528 3920 

… …          

+∞ f (+∞, n) 1 +∞ f(+∞,3) f(+∞,4) f(+∞,5) f(+∞,6) f(+∞,7) f(+∞,8) f(+∞,9) 

 

It is likely that the values of n in this table can be stretched past 0 out to -∞ through 

analytic continuation, the values of n should be n = (all whole numbers) rather than excluding 

values less than 0, as the term for all n=0, f(k,0) = 0. This can be seen in Figure 2 below as the 

points plotted are limited to positive values of n. 

Because of the relationship between f(0,n), f(1,n), and f(4,n) the series set is self-

generated once the general rule is known, as f(0,n) will generate f(4,n) on the fourth iteration, but 

f(0,n) is generated at half the rate that f(4,n) is, so values from f(4,n) can be put back into f(0,n) 

to continually generate the entire family.  

f (0, n) = 1, 0, 4,  0, 10,  0,  20,  0,  35,   0,   56,  0 

f (4, n) = 1, 4, 10,  20, 35,  56,  84,  120,  165,   220,   286,  364 
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Figure 2: 3D Graphed points of f(k,n) of the form P(n, k, f(k,n)) → (P(x, y, z)) 

 

 

Taking the data from Figure 1, the series can be graphed in 3 dimensions, revealing polynomial 

stripes which transverse in the varying k direction with constant n, which is opposite of that of 

the sequence table with constant k varying n. 

By analytic continuation this graph can be stretched in the -n direction allowing insight on 

variables not shown in this study. 

A good name for f(0,n) is the anchor of the set due to the fact that if this series is known, all 

other series can be derived, this is similar to the initial conditions needed to generate a given 

series.  

This process can also be applied to other sequences using them as anchors to generate a sequence 

family for other existing series, this may lead to new discoveries in the relationship between 

varying sequences. 
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PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL’S TRIANGLE: 

Figure 3: f(k,n)’s relation to pascals triangle. 

 

 

The entire set has strong relationships to the Fibonacci sequence hence the progression of 

tetrahedrons as the process is iterated to create a new sequence, this creates a more complex 

shape based on tetrahedrons. (see f(4,n) through f(8,n) for a visualization of this complexity 

through stacked cannonballs). 

 

 

- Leo James Borcherding 

 

 

 *When using the Fibonacci sequence as the anchor series, the resulting series is still the 

Fibonacci sequence due to the nature of how we define the Fibonacci numbers and their 

relationship to this family 


