## PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL'S TRIANGLE:

Leo J. Borcherding
Developed - From: May 23, 2017 - To: Dec 17, 2020
The function $f(k, n)$ is a family of series all related to, and derived from the tetrahedral numbers (OEIS: A000292). They are all variations of tetrahedral shapes, some of which have been classified on the OEIS and other of which have not been classified.

Formally, $f(k, n)$ is defined as:
$f(k, n)$ is the set of all series derived from the anchored series.
$k=($ All whole numbers (including negative values $))$
$n=($ All whole numbers $>=1)$
$f(0, n)$ is the anchored series which generates all other series.
List of sequences in $f(k, n)$ which have been added to OEIS and have been applied to geometry

$$
\begin{array}{ll}
f(-\infty, n)=1,-\infty, f(-\infty, 2), f(-\infty, 3), f(-\infty, 4), f(-\infty, 5), f(-\infty, 6), f(-\infty, 7), \ldots \\
\ldots & \\
f(-1, n)=1,-1,5,-5,15,-15,35,-35,70,-70 \ldots & \text { NO NAME } \\
f(0, n)=1, \mathbf{0}, \mathbf{4}, \mathbf{0}, 10,0,35, \ldots & \text { A000292 (variant) (ANCHOR) } \\
f(1, n)=1,1,4,4,10,10,35, \ldots & \text { A000292 (variant) } \\
f(2, n)=1,2,5,8,14,20,30, \ldots & \text { A006918 } \rightarrow \text { A000330 (variant) } \\
f(3, n)=1,3,7,13,22,34,50, \ldots & \text { A002623 } \\
f(4, n)=1,4,10,20,35,56,84, \ldots & \text { A000292 (original) } \\
f(5, n)=1,5,14,30,55,91,140, \ldots & \text { A000330 } \\
f(6, n)=1,6,19,44,85,146,231, \ldots & \text { A005900 } \\
f(7, n)=1,7,25,63,129,231,377, \ldots & \text { A001845 } \\
f(8, n)=1,8,32,88,192,360,608, \ldots & \text { A008412 } \\
f(9, n)=1,9,40,120,280,552,968, \ldots & \text { A287324 (link to paper) } \\
f(10, n)=1,10,49,160,400,832,1520, \ldots & \text { NO NAME } \\
f(11, n)=1,11,59,209,560,1232,2352, \ldots & \text { NO NAME } \\
\ldots & \\
f(+\infty, n)=1,+\infty, f(+\infty, 2), f(+\infty, 3), f(+\infty, 4), f(+\infty, 5), f(+\infty, 6), f(+\infty, 7), \ldots
\end{array}
$$

*k is evaluated for all real numbers; therefore, the anchor series is defined as the zeroth series, and can be continued in the positive and negative directions*

## Leo J. Borcherding

In order to generate each series, the anchor function is put through an $f(n)+f(n+1)$ process, this can also be interpreted as $f(n)+f(n-1)$, which is evaluated as follows:
a.) $f(1, n)+f(1, n-1)=f(2, n)$
b.) $f(2, n)+f(2, n-1)=f(3, n)$
a.)

| $1+0=1$ | $\rightarrow$ |
| :--- | :--- |
| $1+1=2$ | $\rightarrow$ |
| $4+1=5$ | $\rightarrow$ |
| $4+4=8$ | $\rightarrow$ |
| $10+4=14$ | $\rightarrow$ |
| $10+10=20$ | $\rightarrow$ |
| $20+10=30$ | $\rightarrow$ |

b.)
$1+0=1$
$2+1=3$
$5+2=7$
$8+5=13$
$14+8=22$
$20+14=34$
$30+20=50$
$40+30=70$
... iterate infinitely many times.
This rule can be generalized to the entire family $f(k, n)$ :

$$
\begin{aligned}
& f(-k, n)=f(-k-1, n)+f(-k-1, n-1) \quad(-\infty \mathrm{end}) \\
& \ldots \\
& f(-1, n)=f(-2, n)+f(-2, n-1) \\
& f(0, n)=f(-1, n)+f(-1, n-1) \\
& f(1, n)=f(0, n)+f(0, n-1) \\
& f(2, n)=f(1, n)+f(1, n-1) \\
& f(3, n)=f(2, n)+f(2, n-1) \\
& f(4, n)=f(3, n)+f(3, n-1) \\
& \ldots \\
& f(k, n)=f(k-1, n)+f(k-1, n-1) \quad(+\infty \mathrm{end})
\end{aligned}
$$

This statement is similar to Leonardo Bonacci's original form for the Fibonacci sequence:
$U(k+2, n)=U(k+1, n)+U(k, n)$
Most, if not all, sequences of the family $f(k, n)$, for $\mathrm{k}<=(-1)$, and $\mathrm{k}>=10$, have not been added to the OEIS and do not have names, as of the time of publishing.
*Refer to the Figure 1 in the reading below for values of $f(k, n)$ for all values of $k^{*}$

## PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL'S TRIANGLE:

Figure 1: Table/Matrix of Values for $f(k, n), \mathrm{k}=($ all whole numbers $), \mathrm{n}=($ all whole $>=1)$


It is likely that the values of $n$ in this table can be stretched past 0 out to $-\infty$ through analytic continuation, the values of n should be $\mathrm{n}=$ (all whole numbers) rather than excluding values less than 0 , as the term for all $\mathrm{n}=0, \mathrm{f}(\mathrm{k}, 0)=0$. This can be seen in Figure 2 below as the points plotted are limited to positive values of $n$.

Because of the relationship between $f(0, n), f(1, n)$, and $f(4, n)$ the series set is selfgenerated once the general rule is known, as $f(0, n)$ will generate $f(4, n)$ on the fourth iteration, but $f(0, n)$ is generated at half the rate that $f(4, n)$ is, so values from $f(4, n)$ can be put back into $f(0, n)$ to continually generate the entire family.

| $\mathrm{f}(0, \mathrm{n})=1$, | 0, | 4, | 0, | 10, | 0, | 20, | 0, | 35, | 0, | 56, | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f}(4, \mathrm{n})=1$, | 4, | 10, | 20, | 35, | 56, | 84, | 120, | 165, | 220, | 286, | 364 |

## Leo J. Borcherding

Figure 2: 3D Graphed points of $\mathrm{f}(\mathrm{k}, \mathrm{n})$ of the form $\mathrm{P}(\mathrm{n}, \mathrm{k}, \mathrm{f}(\mathrm{k}, \mathrm{n})) \rightarrow(P(x, y, z))$


Taking the data from Figure 1, the series can be graphed in 3 dimensions, revealing polynomial stripes which transverse in the varying $k$ direction with constant $n$, which is opposite of that of the sequence table with constant $k$ varying $n$.

By analytic continuation this graph can be stretched in the -n direction allowing insight on variables not shown in this study.

A good name for $\mathrm{f}(0, \mathrm{n})$ is the anchor of the set due to the fact that if this series is known, all other series can be derived, this is similar to the initial conditions needed to generate a given series.

This process can also be applied to other sequences using them as anchors to generate a sequence family for other existing series, this may lead to new discoveries in the relationship between varying sequences.

## PROOF OF THE TETRAHEDRAL FAMILY DEFINED BY PASCAL'S TRIANGLE:

Figure 3: $f(k, n)$ 's relation to pascals triangle.
$\mathrm{f}(\mathrm{k}, \mathrm{n})$ in pascals triangle


The entire set has strong relationships to the Fibonacci sequence hence the progression of tetrahedrons as the process is iterated to create a new sequence, this creates a more complex shape based on tetrahedrons. (see $f(4, n)$ through $f(8, n)$ for a visualization of this complexity through stacked cannonballs).

- Leo James Borcherding
*When using the Fibonacci sequence as the anchor series, the resulting series is still the Fibonacci sequence due to the nature of how we define the Fibonacci numbers and their relationship to this family

