login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286918 Total number of nodes summed over all lattice paths from (0,0) to (n,n) using steps {(k,0), (0,k) | 0<k<=4} which never go above the diagonal x=y. 2
1, 3, 21, 159, 1257, 10046, 81811, 674184, 5605141, 46920874, 394949193, 3339464105, 28343082002, 241324470723, 2060357315568, 17632454524499, 151211115930880, 1299121121946684, 11179500360964780, 96344672766997340, 831385476662968094, 7182777882757416692 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 8.84734830841870961487278801886633962039798... is the real root of the equation 4 + 4*d - 8*d^2 - 8*d^3 + d^4 = 0 and c = 0.43633259077568249345422000202799136319250347607927734138960545201547... - Vaclav Kotesovec, May 30 2017
MAPLE
b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
`if`(x=0, [1$2], add((p-> p+[0, p[1]])(
b(x-j, y)+b(x, y-j)), j=1..4)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..25);
MATHEMATICA
b[x_, y_] := b[x, y] = If[y > x || y < 0, {0, 0}, If[x == 0, {1, 1}, Sum[Function[p, p + {0, p[[1]]}][b[x-j, y] + b[x, y-j]], {j, 1, 4}]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A175891.
Sequence in context: A026333 A205773 A192364 * A358953 A189508 A074570
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 17 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 09:50 EST 2023. Contains 367517 sequences. (Running on oeis4.)