%I #20 May 16 2017 04:29:56
%S 0,0,2,4,3,2,1,3,6,2,3,2,3,1,8,4,0,1,5,1,4,3,0,3,3,0,2,6,11,1,1,2,7,3,
%T 1,7,5,0,2,4,3,1,6,1,8,6,0,4,9,1,7,2,0,1,7,6,10,0,0,3,7,0,5,6,5,1,1,1,
%U 7,0,9,4,2,0,2,4,4,2,1,3,10,4,1,3,17,0
%N Number of regular non-orientable maps on a surface of genus n.
%D Marston Conder, Email to N. J. A. Sloane, May 08 2017
%H Marston Conder, <a href="/A286275/b286275.txt">Table of n, a(n) for n = 2..602</a>
%H Marston Conder and P. Dobcsányi, <a href="https://doi.org/10.1006/jctb.2000.2008">Determination of all regular maps of small genus</a>, J. Combinatorial Theory, Series B, 81 (2001), 224-242.
%H Marston Conder, <a href="https://doi.org/10.1016/j.jctb.2008.09.003">Regular maps and hypermaps of Euler characteristic -1 to -200</a>, J. Combinatorial Theory, Series B, 99 (2009), 455-459.
%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/">Home Page</a> (Contains tables of regular maps, hypermaps and polytopes, trivalent symmetric graphs, and surface actions)
%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/NonorientableRegularMaps202.txt">Non-orientable regular maps of genus 2 to 202</a> (I think this is superseded by the following link)
%H Marston Conder, <a href="https://www.math.auckland.ac.nz/~conder/NonorientableRegularMaps602.txt">Non-orientable regular maps of genus 2 to 602</a>
%K nonn
%O 2,3
%A _N. J. A. Sloane_, May 08 2017
|