login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that 2^m + (-1)^m is prime.
7

%I #44 Mar 25 2023 00:06:43

%S 0,2,3,4,5,7,8,13,16,17,19,31,61,89,107,127,521,607,1279,2203,2281,

%T 3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,

%U 132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667

%N Numbers m such that 2^m + (-1)^m is prime.

%C With 1, exponents of A141453 (see comment by _Wolfdieter Lang_, Mar 28 2012).

%C Numbers m such that (1 + k)^m + (-k)^m is prime:

%C 0 (k = 0);

%C this sequence (k = 1);

%C A283653 (k = 2);

%C 0, 3, 4, 7, 16, 17, ... (k = 3);

%C 0, 2, 3, 4, 43, 59, 191, 223, ... (k = 4);

%C 0, 2, 5, 8, 11, 13, 16, 23, 61, 83, ... (k = 5);

%C 0, 3, 4, 7, 16, 29, 41, 67, ... (k = 6);

%C 0, 2, 7, 11, 16, 17, 29, 31, 79, 43, 131, 139, ... (k = 7);

%C 0, 4, 7, 29, 31, 32, 67, ... (k = 8);

%C 0, 2, 3, 4, 7, 11, 19, 29, ... (k = 9);

%C 0, 3, 5, 19, 32, ... (k = 10);

%C 0, 3, 7, 89, 101, ... (k = 11);

%C 0, 2, 4, 17, 31, 32, 41, 47, 109, 163, ... (k = 12);

%C 0, 3, 4, 11, 83, ... (k = 13);

%C 0, 2, 3, 4, 16, 43, 173, 193, ... (k = 14);

%C 0, 43, ... (k = 15);

%C 0, 4, 5, 7, 79, ... (k = 16);

%C 0, 2, 3, 8, 13, 71, ... (k = 17);

%C 0, 1607, ... (k = 18);

%C ...

%C Numbers m such that (1 + k)^m + (-k)^m is not an odd prime for k <= m: 0, 1, 15, 18, 53, 59, 106, 114, 124, 132, 133, 143, 177, 214, 232, 234, 240, 256, ...

%C Conjecture: if (1 + y)^x + (-y)^x is a prime number then x is zero, or an even power of two, or an odd prime number.

%C The above conjecture can be proved by considering algebraic factorizations of the polynomials involved. - _Jeppe Stig Nielsen_, Feb 19 2023

%C Appears to be essentially the same as A174269. - _R. J. Mathar_, May 21 2017

%H Jeppe Stig Nielsen, <a href="/A285929/b285929.txt">Table of n, a(n) for n = 1..52</a>

%F a(n) = A174269(n) for n > 2. - _Jeppe Stig Nielsen_, Feb 19 2023

%e 4 is in this sequence because 2^4 + (-1)^4 = 17 is prime.

%e 5 is in this sequence because 2^5 + (-1)^5 = 31 is prime.

%t Select[Range[0, 10^4], PrimeQ[2^# + (-1)^#] &] (* _Michael De Vlieger_, May 03 2017 *)

%o (Magma) [m: m in [0..1000]| IsPrime(2^m + (-1)^m)];

%o (PARI) is(m)=ispseudoprime(2^m+(-1)^m) \\ _Charles R Greathouse IV_, Jun 06 2017

%Y Supersequence of A000043.

%Y Cf. A000668, A019434, A141453, A174269, A283653, A285886, A285887, A285888.

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Apr 28 2017