login
Number of ordered set partitions of [n] into two blocks such that equal-sized blocks are ordered with increasing least elements.
4

%I #18 May 26 2018 04:18:04

%S 1,6,11,30,52,126,219,510,896,2046,3632,8190,14666,32766,59099,131070,

%T 237832,524286,956196,2097150,3841586,8388606,15425136,33554430,

%U 61908562,134217726,248377154,536870910,996183062,2147483646,3994427099,8589934590,16013066072

%N Number of ordered set partitions of [n] into two blocks such that equal-sized blocks are ordered with increasing least elements.

%C a(n) is odd if and only if n = 2^k with k>0.

%H Alois P. Heinz, <a href="/A285917/b285917.txt">Table of n, a(n) for n = 2..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p a:= n-> 2*add(binomial(n, k), k=1..n/2)-

%p `if`(n::even, 3/2*binomial(n, n/2), 0):

%p seq(a(n), n=2..40);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<5, [0, 1, 6, 11][n],

%p (9*(n-1)*(n-4)*a(n-1)+2*(3*n^2-16*n+6)*a(n-2)

%p -36*(n-2)*(n-4)*a(n-3)+8*(n-3)*(3*n-10)*a(n-4))

%p /((3*n-13)*n))

%p end:

%p seq(a(n), n=2..40);

%t a[n_] := 2*Sum[Binomial[n, k], {k, 1, n/2}] - If[EvenQ[n], 3/2*Binomial[n, n/2], 0];

%t Table[a[n], {n, 2, 40}] (* _Jean-François Alcover_, May 26 2018, from Maple *)

%o (PARI) a(n) = 2*sum(k=1, n\2, binomial(n, k)) - if (!(n%2), 3*binomial(n, n/2)/2); \\ _Michel Marcus_, May 26 2018

%Y Column k=2 of A285824.

%Y Cf. A285853.

%K nonn

%O 2,2

%A _Alois P. Heinz_, Apr 28 2017