login
Expansion of (1-6*x+11*x^2-5*x^3) / ((1-x)*(1-3*x)*(1-3*x+x^2)).
1

%I #14 Aug 19 2022 11:12:52

%S 1,1,2,6,20,67,221,717,2294,7258,22760,70863,219353,675769,2073674,

%T 6342414,19345052,58867195,178779893,542042565,1641058046,4962262306,

%U 14989121072,45235277511,136407241265,411058035697,1237981634066,3726531171222,11212544793764,33723901952563

%N Expansion of (1-6*x+11*x^2-5*x^3) / ((1-x)*(1-3*x)*(1-3*x+x^2)).

%H Colin Barker, <a href="/A285197/b285197.txt">Table of n, a(n) for n = 0..1000</a>

%H M. H. Albert, M. D. Atkinson, and V. Vatter, <a href="http://arxiv.org/abs/1209.0425">Inflations of geometric grid classes: three case studies</a>, arXiv:1209.0425 [math.CO], 2012.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-16,13,-3).

%F From _Colin Barker_, May 01 2017: (Start)

%F a(n) = 7*a(n-1) - 16*a(n-2) + 13*a(n-3) - 3*a(n-4) for n>3.

%F a(n) = (1/2 + 3^n/2 + (2^(-n)*((3-sqrt(5))^n - (3+sqrt(5))^n)) / sqrt(5)).

%F (End)

%F 2*a(n) = 1 +3^n -2*A001906(n). - _R. J. Mathar_, Aug 19 2022

%t LinearRecurrence[{7,-16,13,-3},{1,1,2,6},30] (* _Harvey P. Dale_, Apr 01 2018 *)

%o (PARI) Vec((1-6*x+11*x^2-5*x^3) / ((1-x)*(1-3*x)*(1-3*x+x^2)) + O(x^30)) \\ _Colin Barker_, May 01 2017

%Y Cf. A262600.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Apr 30 2017