The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285031 0-limiting word of the morphism 0->10, 1-> 001. 3

%I #5 Apr 19 2017 09:20:17

%S 0,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1,0,

%T 0,0,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,1,0,0,1,

%U 1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1

%N 0-limiting word of the morphism 0->10, 1-> 001.

%C The morphism 0->10, 1->001 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 00110 -> 101000100110 -> 00110001101010001101000100110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 00110 -> 101000100110, as in A285034.

%H Clark Kimberling, <a href="/A285031/b285031.txt">Table of n, a(n) for n = 1..10000</a>

%t s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1}}] &, {0}, 8]; (* A285031 *)

%t Flatten[Position[s, 0]]; (* A285032 *)

%t Flatten[Position[s, 1]]; (* A285033 *)

%Y Cf. A285032, A285033, A285034.

%K nonn,easy

%O 1

%A _Clark Kimberling_, Apr 19 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 06:57 EST 2023. Contains 367557 sequences. (Running on oeis4.)