login
a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 5.
0

%I #12 Dec 19 2022 09:41:55

%S 0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,2,0,3,0,4,

%T 1,2,3,6,2,4,4,4,3,8,5,7,7,9,7,7,11,14,9,5,16,13,28,16,26,18,23,27,32,

%U 27,35,33,39,34,56

%N a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 5.

%C The number of all Chomp positions with Sprague-Grundy value 5 are given in A284692.

%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.

%H Thomas S. Ferguson, <a href="https://www.mina.moe/wp-content/uploads/2018/05/GAME-THEORY-Thomas-S.Ferguson.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).

%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article">Über mathematische Kampfspiele</a>, Tohoku Math. J. 41 (1936), 438-444.

%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/43/0/43_0_351/_article">Über zwei Abarten von Nim</a>, Tohoku Math. J. 43 (1937), 351-354.

%Y Cf. A112471, A112472, A112473, A284692.

%K nonn

%O 1,30

%A _Thomas J Wolf_, Apr 06 2017