login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating row sums of the Sheffer triangle (exp(x), exp(3*x) - 1) given in A282629.
5

%I #20 Nov 29 2023 13:06:04

%S 1,-2,-5,19,178,175,-7739,-72056,-33179,6899311,87861076,215532301,

%T -11151014291,-222077806202,-1563185592617,22953386817343,

%U 878911293113026,12330887396253691,1416506544326449,-4284948239134152536

%N Alternating row sums of the Sheffer triangle (exp(x), exp(3*x) - 1) given in A282629.

%C See A282629 for details. This is a generalization of A000587.

%F a(n) = Sum_{m=0..n} (-1)^m*A282629(n, m), n >= 0.

%F E.g.f.: exp(x)*exp(1 - exp(3*x)).

%F a(n) = (1/e)*Sum_{m>=0} ((-1)^m / m!)*(1 + 3*m)^n, n >= 0, (Dobiński type formula).- _Wolfdieter Lang_, Apr 10 2017

%F a(0) = 1; a(n) = a(n-1) - Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k). - _Ilya Gutkovskiy_, Nov 29 2023

%t Fold[#2 - #1 &, Reverse@ #] & /@ Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 19}, {m, 0, n}] (* _Michael De Vlieger_, Apr 08 2017 *)

%o (PARI) T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);

%o a(n) = sum(m=0, n, (-1)^m*T(n, m)); \\ _Indranil Ghosh_, Apr 10 2017

%Y Cf. A000110, A282629, A284859.

%K sign,easy

%O 0,2

%A _Wolfdieter Lang_, Apr 05 2017